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ON THE PITCH DAMPING MOMENT IN HOVERING
OF A RIGID HELICOPTER ROTOR

Kingo Takasawa
Flight Experimentation Sectlon

Coordinates /1%

(1) X Y3Z; Coordinates

Right-hand rectangular coordinate axes in which the origin
is taken at the center of the rotor. They are fixed in space.
The X3 axis faces upward, and the Zj axis faces downward. The
unit axial vectors are I, J, K.

v(ii) XYZ Coordinates

Right-hand rectangular coordinate axes in which the origin
is taken at the center of the rotor. They are fixed to the
rotor. Pitching motion with an angular velocity 6J is performed
around the Y axis. They coincide with coordinates XiY{Z4y at
time t = 0. The unit veetors in the axial direction are %, 4, k.

(iii)" x'y'z' Coordinates

Right-hand rectangular coordinate axes in which the origin
1s taken at the center of the rotor. They are fixed to the
rotor blade. The y' axis faces outward in the radial direction,
and the z' axis faces upward. The unit vectors in the axlal
direction are ¥, j¥, k¥,

(iv) 1tro Coordinates

They are the curve coordinates used in Ichikawa's monographs
[1, 2, 3]. The relationship in Eq. (4.1) applies between them /2
and the x'y'z' coordinates.

The XYZ coordinates, the x'y'z' coordinates, and the tro
coordinates are depicted graphically in Fig. 66. The X3YiZ4
coordinates, the XYZ coordinates, and the x'y'z' coordinates
are depicted graphically in Fig. Ui,

Symbols _
Aq Coefficient of blade vibration equation. Refer to Eq. (1.17).

¥Numbers in the margin indicate pagination in the foreign text.



b'
by'

Coefficient of blade vibration equation. . Refer to Eq. (1.18).
Coefficient of blade vibration equation. Refer to Eq. (1.21).
Acceleration vector |

Two-~dimensional 1ift curve slope

Half chord length

: y' = Half chord length at position of (R2' + Rl')/2 (Fig. 59).

C(k) Theodorsen's function
C'(k,m,h) Lift deficiency function derived by Loewy

Dy
Do
EI
e

' {1/2 for I=0
15 -

Chord length

Influence function in seeking the induction velocity. Refer
to Eq. (4.12)

Coefficient of blade vibration equation. Refer to Eq. (1.19).
Coefficient of blade vibration'equation. Refer to Eq. (1.20).
Flexural rigidity of bléde

Bottom of natural logarithm

F(k) Real part of C(k)
F'(k,m,h) Real part of C'(k,m,h)

Fy
Fp
Fy

Vector of air force operating on unlit wing span of blade
Absolute value of Fy ‘
Vector of mass force operating on unit wing span of blade

;’FW i FWpe= " cos 0 cos gbdl

Ry

o
® cos g—cos §

FX: FX,,,:S cos p cos gf

o |cos ¢—cos 6]

'V x cos g—cos &
FY: Fqu= Sucospﬁcosqﬂm

Xlogicos g—cos 6d0
;o z 1
FZ: FZ‘,¢= SGCOSPOOOSQOW dé
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G(k)

General coordinate expressing flexibility of blade

Steady component of f '

sin(Q+p)t component of f

sin(Q~-p)t component of f

cos(Q+p)t component of f

cos(f-p)t component of f

Influence function 1in seeking the induction veloecity. Refer
to Eq. (4.12).

Imaginary part of C(k)

G'(k,m,h) Imaglnary part of C'(k,m,h)
- 272
Hpry Hpry = /2T #B/2

(2
i,

hl
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Oy

1.(2)

Second type Hénkel function
Distance between center of gravity of movable part of
experimental apparatus and space between pitching axes,
spaces of vortex sheets in Loewy's theory .
Parameter derived from Ichikawa's theory, h = W/Q
Inertia efficiency around pitching axis of movable part of
experimental apparatus |
First type transformed Bessel function
Contribution of vortex with replaced Wing surface appearing
in 1ift surface equation
Contribution of vortex with replaced trailing vortex sheet
appearing in 1lift surface equation )
Contribution of vortex with replaced shed vortex sheet
appearing in 1ift surface equation
Contribution to 1ift surface equation when the shed vortex
pattern at the point where the downwash is calculated is
regarded as extending to an infinite distance on both sides
in the wing span direction
Unit veetor in the X3 coordinate axial direction
AL = I3 - 15(2)
Imaginary unit
Unit vector 1n X axial direction
Unit vector in x axial direction in xyz coordinate axis
of reference [1], i1 = %



i¥  Unit vector in x' axial direction

Jo First typé Bessel function

Ji Second type Bessel function

J Unit vector in Y; axial direction

J Unit vector in Y axial direction

J1 Unit vector in y axial direction in xyz coordinate axis
of reference [l]; Jt = -d

J¥ Unit vector in y' axlal direction

Ky Second type transformed Bessel function

Kg Coefficient for estimating the pitch damping of an entirely .
rigid blade, excluding,the pltch damping baused by the
elasticity of the blade from the pitch damping obtained
experimentally

K Unit vector in the Zi axial direction

k Unit vector in the Z axlial direction

k1 Unit vector in the z axial direction 1n'xyz coordinate
axis of reference [1], kp = -k

k¥  Unit vector in the z' axial direction

Dimensionless vibration frequency, refer to Eq. (3.25)

Dimensionless vibration frequency, refer to Eqg. (3.25)

Amplitude of unsteady 1lift operating on unit wing span

Struve function, refer to Eq. B5 ’

p/Q ‘

Moment generated around the hub of the reference blade

§§sEblgw

Moment operating around the Y axis

9M/30 Pitch damping derivative

(8M/38)p Derivative of the pitch damping generated directly |
because of the pitching of the rotor. Can also be called
the pitch damping considered when one has assumed an
entirely rigid rotor blade.

(8M/86)E Coefficient of pitch damping generated through the

elastic deformation occurring in the blade when the rotor:

undergoes pitch damping
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Ng: NAEqS dl
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No: Not =, [ =5 5%

Nonsingular portion of N,: ‘mu*NAw_'W' .
Nonsingular portion of Np: 4Ns=Na@)- ““*fﬁ
Nonsingular portion of Ng: ANg= Nb—lxbmq @+bgm+~0

Number of rotor cycles after the generation of a given
vortex until the present time

Point where the induction velocity is sought P(x',y',z'),
P(t,r,0)

Point where there is a vortex P(E',n',z'), P(x',r',0")
Pitching vibration frequency p = 2u/T

Pressure¥®

p/Q .

Pressure difference between upper and lower wing surfaces
Number of blades

General force

Blade numbers. Assigned in ascending order (0, 1, 2, ...)

in the same direction as the direction of the rotor revolution.

o

. oW —7)
>q'¢",}ﬁ#)

Distance between point P and point P!

Inside radius of wing area making up blade, R} = Rj'/Db'
Outside radius of wing area making up blade, Ry, = Ry'/b'
Position vector

Vector in the tangential direction of the T coordinate curve
of the 1tro coordinate; refer to Eqs. (4.3) and (4.4).

¥[Note: Original does not differentiate between symbols for
pitching vibration frequency and pressure. ]



r r coordinate of point P

r' r coordinate of point P!

St Blade length, S' =,R2‘

Sgi Length from hub to inside of wing area, Sg! = Ry'

s! Length from hub along central line of blade, s = s'/Ry'
T Pitching cycle

T Kinetic energy#

t Present time

! Time at which a certain vortex occurred

At Time after the vortex Yng(g',t) occurred until the present
time ’

U Strain energy
du' x' direction components of virtual displacement
v Main stream velocity, V = y'Q
vy . Velocity component in X direction at a point on the blade
Vy Velocity component in Y direction at a point on the blade
vy Velocity component in Z directlon at a point on the blade
vy Steady induction veloclity on rotor surface
Vg, Unsteady components in the inductlon veloclty
v Amplitude of vy
v Steady components 1in the induction velocity
dv' y' direction components of virtual displaéement
W Weight of movable parts of experimental apparatus
Rotor ascending velocity

W Function expressing contribution of the vortex in the wake¥
SW Virtual work

§w' z' direction components of virtual displacement »
x! x' coordinates at point where induction velocity is sought

N 2= (zf+al)/2 -
i X= b,""—_—

‘¥[Note: Original does not differentiate between symbols for
pitching cycle and kinetic energy;.ilikewise, symbols W.]



Za'

x' coordinates at front edge of blade
x' coordinates at rear edge of blade

o'tz

xm': Im= “—*z—b—,-—"

y' coordinates at point where induction velocity is sought
y' coordinates at place where circulation distribution along
the blade radius attains the maximum

Blade flexibility

z' coordinates at point on blade camber line

zq'(t) Z1 coordinates of q blade at present time
zq*'(t) Z; coordinates of q*-th blade at point in time when a

Y00
Y0q
.an

Yo

vortex occurred immedliately below q blade at the present
time

Bound vortex of standard blade

Amplitude of Ty'

T = f&'eik/b (Chapter 2)

Bound vortex of g-th blade

Bound vortex of blade

Bound vortex of standard blade

r:r=Td 222 (Chapter 3)
0

P: ['g,'/bo’ . v

Lock number (Chapter 1)

Vortex surface expressing standard blade

Amplitude of vy,

Shed vortex following immediately after standard blade

Shed vortex followlng immediately after g-th blade

Shed vortex occurring from the g-th blade before n rotations
Euler's constant (Chapter 3)

Components imfi the vertical direction to the main stream of
the vortex expressing the wing surface (Chapter 3

Components in the vertical direction to the main stream of
the vortex in the ‘wake : .

/b



A'ij

Surface veloclity of the vortex sheet

y vortex replacing the standard blade

Components in the rp direction of the vortex; refer to

Eq. (4.5)

Components in the j* direction of ¥y

Intensity of vortex occurring from between the j-th dividing
point on the g-th blade and the j+l-th dividing point

Al 1-2‘. Zq jE 2444/ (xd —x") ‘

Intensity of vortex in 1l-th layer immediately below the g-th
blade. J indicates that it is the j-th vortex filament from
the inside.h

r. direction components of the vortex, refer to Eq. (4.5).
Mainstream direction components of the vortex expressing

the wing surface ‘

1% direction components of ¥y

§ replacing the standard blade:

Mainstream direction components of the vortex in the wake

z' coordinates of the vortex

Z; coordinates of the vortex fllament replacling the vortex
occurring from between the j-th dividing point on the g-th
blade and the j+l-th dividing point .

Z4 coordinates of vortex in the 1-th layer immediately

below the g-th blade. Jj indicates that it is the j-th
vortex filament from the inside

y' coordinates of the vortex

y' coordinates of the dividing point of the blade

y' coordinates of the vortex fllament occurring from between
the j-th dividing point on the g-th blade and the j+l-th
dividing poinf

y' coordinates of the vortex in the l-th layer immediately
below the q-th blade. J 1indicates that it is the J-th vortex
filament from the inside.



6 Pitching angle, i.e., angle of inclination of rotor surface
0 Coordinates with changed 1

_ Rt Ry Ry—Ry N
1= cos ¢

|

Pitching amplitude
BJ Chebyshev's dividing point

7 (j=1,2,3,~J+1)

ej 8 coordinates corresponding to noj
8o Corrective pitch angle

oA 8 coordinates corresponding to y,'
8x Effective angle of incidence

Aq Refer to Eq. (2.25)

Ap  Refer to Eq. (3.41)

A Dummy parameter
7 A 4= -%é—;—l—)—
wl’
lg. lg: W

A¥  Dummy parameter

Al At =.€| - x!

u(s) Mode function expressing blade flexibility

Y Mass per unit length of blade.

E! x' coordinates of vortex

m Pi, ratio of the circumference of a circle to 1ts diameter
D Alr density

g Solidity ratio (Qec'/mRy')

o] g coordinates at point P

‘ot o coordinates at point Pf



o(v'—7)

T T= -—‘,-(—’7-)_..
T T coordinates at point P
T! T coordinates at point P!

t# 1% = ¢ - Uyn - 219/Q
¢ Disturbance potential
Y Coodinate with changed y

- Rg-}-Rl _ R;—-:Rg

» 3 3 cosf

¢4 Multhopp's dividing point

¢‘=‘Ni}:‘f (i=1,2,..-N)

("% Azimuth angle of blade

Yq Azimuth angle of g-th blade (wq = Yo + 219/Q)

WQ Phase difference between bound vortex of standard blade
and bound vortex of g-th blade

w Vibration frequency of blade

wR Primary flexural characteristic frequency of blade which is
not rotating

Y Rotary angle velocity of rotor .

Superscripts

' Used in cases when a quantity related to the length has
dimensions

Time derivative

- Indicates amplitude

Subsecripts

U Quantity on upper surface of wing
L Quantity on lower surface of wing

10



R Indicates real part ,
+ Quantity related to frequency components of  + p
-~ Quantity related to frequency components of § - p

Introduction

Those types of helicopter rotors which do not have flapping -
hinges are called non-articulated rotors or rigid rotors. Many
years ago, rotors of this type were used in lightweight heli-~
copters such as single-seat flying platforms. In recent years,
thanks to the progress made recently in blade construction and .
materials, rigid rotors have been adopted in high~grade four or
five seat helicopters such as the XH-51, AH-56, or BO-105.

In rotors of this type, the control moment produced by the
air force operating on the blades is transmitted directly to
the airframe. Consequently, it is possible to produce a powerful
control moment with an extremely small time lag as compared with
the conventional helicopter rotors of the past. Besides, by
selecting the flapwise flexural characteristic frequency of
the blades in a suitable manner, one can obtain a pitch damping
and roll damping greater than in the conventional rotors of the
past [4]. Another advantage in the way of increasing the speed
is the fact that the rotor hub can be formed with a smart :
appearance, since there are no flapping hinges. Because of
these consideratlions, rigid rotors are regarded as promising
both from the standpoint of the piloting safety and from the
standpoint of increasing the speed.

However, at the present time, methods of calculating the
pitch and roll damping have not yet been established. There
are studies by Payne [5], Beppu [6], Townsent [7], and Naito
concerning the pitch and damping of rigid rotors ‘in the hovering
state.

Payne demonstrates that there is no difference between
cases when the flapping hinge 1is constrained by springs and
cases when the flapping hinge 1s mounted on the hub with an off-
set. He proves theoretically that the plitch damping changes when
the spring strength or the size of the offset changes.

Beppu demonstrated, with respect to a rotor with a flapping
hinge with hinge offset constrained by springs, that pitch
damping occurs because of three reasons. Eirst, it occurs on
account of delay of the tip pass plane. Second, it occurs on
account of the hinge offset; and third, during blade flapping,
it is transmitted to the airframe through the hinge springs.
The first two causes are well known in the conventional articulated

11



rotors of the past, but the third one is characteristic of
rotors in which the flapping hinge is constrained by means of
springs. In rotors of this type, the damping caused by the
hinge offset will decrease as the strength of the spring is
increased. However, it was demonstrated theoretically that the
pitch damping transmitted through the springs will first of all
increase as the strength of the springs 1s increased, but that
it will decrease after the maximum value has been reached. As a
result, in rotors having flapping hinges with hinge offsets
which are constrained by springs, on the whole the pitch damping
will increase as the strength of the springs 1s increased, and
it will then decrease after the maximum value has been reached.
This has also been confirmed by large-scale experiments. Examples
of the theoretical calculations by Beppu and examples of his
experimental values are given in Fig. 1. The moment produced by
the spring and the moment produced by the air force are plotted
on the abscissa. On the
ordinate 1s plotted the
o P pitch damping divided by
M; . the product of the inertia
i efficiency around the
blade hinge and the rotary
angle velocity of the rotor.
When there is a weak
spring strength, there is
good agreement between the
experimental and theoretical
values, but the divergence
. between them increases as
; the spring strength is

o 2
O MEM

(£2="500rpm) ‘ .
0 - increased. Beppu mentions,
- - ' as the reason for this,
o the fact that the air force
can not be calculated
' o} accurately.
0 1 ] ]
0 1 2 8k 3 Townsent, dealing with
N pac'SR* rotors in which the blades
are mounted directly on
Fig. 1. Comparison of experimental the hub, assumes that
and calculated values of pitch bending and twisting defor-
damping [6]. ' mations do not occur in
' the blade. Estimating
Key: 1. Calculated values the air force simply, he
2. Measured values obtained a formula for
- seeking the pitch damping.
/6
%: -——~% pac’ RSAQ .. ( i )

12



Here, a is the 1ift inclination assumed for two-dimensional
steady wings. In this monograph we adopt the following equation
as a basis for organizing various pitch dampings obtained either
experimentally or analytically. In this equation, the theoreti-
cal value 21 1s used for a.

%’—=——% PEWRID o (1i1)

Naito conducted experiments concerning rotors with the blades
mounted directly on the hub. Figure 2 is an example of the ,
results. In the figure, wg is the primary flexural characteristic
frequency of the blade at the stationary state. This is a para-
meter representing the blade's rigidity. The solid line indi-
cates the calculated values obtained by using Eq. (2). The
experimental apparatus is shown in Fig. 3. Naito derives the
following two concluslions from the results of these experiments.

(1) When the rotor /7
revolutiorn speed is

A ‘ smaller than the primary
Mi | flexural characteristic
kgmsec| ] , ; frequency of the blades,
N e j the value of the pitch
® w812 ; , 5 . damping is about one
o e /o third of that indicated
’ 2 RN in Eq. (2).
~osk ‘ Honk *
o A “ (1i) The pitch

B ' : v damping will increase
! - rapidly when the rotor
. 06 | revolution speed is
- f increased. However, it
. ! is believed that this is
o4k A /_ because periodical elastic
’ i deformations occur in
; - the blades on account of
, [ the Coriolis force, so
—02} o A @ ' , that there are fluctua-
‘ ‘ tions of the effective
- angle of incidence of
' the blade section.

0 1 b

H 1 i H 1
0 200 400- 600 800 1000 1200 1400
. : rpm

Beppu's experiments
when the springs were
Fig. 2. Comparison of experimental and strong, as well as Naito's
theoretical values for pitch damping of experiments, reveal that

rotors with two blades. the experimental values
of the pitch damping are
Key: 1. Experimental values much smaller than the
2. Theoretlcal values theoretical values.
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The four studies described
above have made it clear
approximately what values are
assumed by the pitch damping
of a rigid rotor, and how these
values change together with
fluctuations of the spring
strength and the blade rigidity.
However, nothing at all has been
said to explain the reason why
calculated values are much
smaller than the measured values
in cases when the spring strength

~ is great enough or when the pri-
mary flexural characteristic
frequency of the blades is great
enough in comparison with the
revolution speed of the rotor.

In connection with the problem
of pitch damping, this question is a question pertaining to the
mechanism by which air forces are produced. If it were possible
to elucidate the mechanism of production of air forces, one
could explain the reason for the small pitch damping values, and
one could obtain an adequate understanding concerning pitch
damping of rigid rotors. This research attempts to elucidate
the mechanism by which are produced the air forces which govern
pitch damping. Using the pitch damping calculation method
obtained as a result, it attempts to calculate the pitch damping,
and it also attempts to prove, by comparison with experiments,
that this calculating method is a valid one.

Fig. 3. Pitch damping experi-
mental apparatus (1) (provided
by Mr. Naito).

In order to elucidate the fundamental properties of the
phenomena, pitch damping at the state of hovering will be dis-
cussed with reference to a rotor in which 1t is possible to per-
form pitching alone. The model is as shown in Fig. U4; pitching
motion can be performed around the Yi axis. This model is nearly
the same as that used in the experiments of Beppu and Naito. The
rotor's center of rotation is exactly on the pitching axis.
Therefore, pure pitching, containing no translation, is produced.
Since the blade, naturally, does not perform flapping, there is
not produced in this case any of the pitch damping which is
caused by retardation of the tip pass plane, which plays: such
an important role in piltch damping of articulated rotors.

This research consists of both experiments and analysis.
The experiments are described in Chapter 1. The experiments
were carried out with the apparatus shown in Figs. 3 and 5.
The rotor surface shakes like a pendulum with a small amplitude
around the pitching axis. The vibration amplitude of the rotor
surface decreases gradually on account of the pitch damping moment.

14



Fig. 4. Rigid rotor in which

pitching is performed around
the Y axis.

m!!
i

1y
1t

kFig. 5. Pitch damping experi-
mental apparatus.

The pitch damping 9M/36 can
be sought from this amplitude
damping. It is believed that
the measured 3M/38 is the

sum of (3M/38)Rr, the portion
produced by pitching of the
rotor surface, and (aM/ae)E,
the portion generated during
pitching through the bending
deformation occurring in the
blades. The former, (3M/36)g,
increases exactly in propor-
tion to the revolution speed
of the rotor, but the latter,
(3M/38 )i, increases even more
rapidly than the increase in
the revolution speed of the
rotor. It is this which is
the cause of the rapid.
increase in the pitch damp-
ing, which has already been
seen in Fig. 2.

In Chapter 1, Section 3,
the strip theory making use
of two-dimensional quasi-

" steady air forces is used to

perform analyses in which
the bending deformation
effects of the blades are
treated aerocelastically.

It is shown that the meas-
ured value of 3M/96 can be
separated into (9M/38)Rr and
(BM/BB)E.

In Chapter 1, Section U,
the appearance of the vortex
in the rotor wake was observed,
and smoke experiments were

performed in order to obtain data about the vortex positions which
would serve as the foundation for subsequent analysis.

In Chapters 2 and 3, the pitch damping is calculated using
two existing vibrating wing theories concerning helicopter
rotors. By comparing the results with the experimental results
described in Chapter 1, one can estimate the characteristics of
the air forces governing piteh damping.

In Chapter 4 is derived a 1lifting line equation suitable

for analyzing pitch damping.

This takes 1ts departure from the

15



1ift surface integral equation in [1] concerning steady rotation
wings. The equation is derived when it 1s assumed that there

is a small inflow and that the influence of distant vortices

is negligible.

Next, this calculating method was applied, and the pitch
damping was calculated for a model in which the fluctuations in
the distance between the blade and the wake vortex were taken
into consideration. The results agreed with the experimental
values better than the calculated values obtained by using
other theories.

In Chapter U4 is proposed a formula for calculating simply
Mg, the derivative of pitch damping which occurs when a rigid
rotor performs pitching at a definite angular velocity. It
was proved, by a comparison with the experimental values in [6],
that the results obtained by using this formula are quite good.

CHAPTER 1. EXPERIMENTAL RESEARCH IN PITCH DAMPING

The pitch damping of a rigid rotor in a state of hovering
was sought experimentally. The appearance of the vortex in the
rotor wake was investigated by means of smoke experiments.

There are two types of experimental devices for measuring
pitch damping. Photographs of both types are shown in Figs. 3
and 5. The salient features of both of them are as shown in
Fig. 6. The rotor and its supporting frame are supported by
bearings at both ends. The
bearing shafts are horizontal,
and the rotor hub is located
on this axis. The rotor
shakes 1like a pendulum inside
a vertical plane, centering
around the axis. The experi-
ments were performed in a room
with a high enough ceiling,
and the angle of incidence and
the direction of rotation were
set so that the rotor wake would
blow up toward the ceiling.
Therefore, it is not necessary
to consider the influence of
the ground effect. Naturally,

: the surroundings may be con=-
Fig. 6. Diagram of the experi- sidered to be windless, and
mental apparatus. the rotor current will not be
disturbed by external currents.
After setting the pitch angle of the blades and rotating the
rotor at a definite speed, if one inclines the supporting frame

16



and then releases the hand, the pitching amplitude will be
damped gradually. The pitch damping is sought from this ampli-
tude damping. The experiments were performed with rotors having
two blades and rotors having three blades.

1.1. Experiments with Rotors Having Two Blades /9

Experimental Apparatus

A photograph of the equipment is shown in Fig. 3. Figures 7
and 8 are explanatory dilagrams of the equipment and of the meas-
uring instruments. The dimensions and other data about the
equipment are shown in Table 1.

the experiments is to

5
. 3 q/ : measure the pitch damping
A 2 ' b ©) ' which occurs on account of
Eﬁjf“ the portion inhibiting the
2 ’ j

e N Since the purpose of

pitching, among the moments
which are produced around
the pitching axis by the
air forces which are pro-

6 ’ 6 f duced accompanying the rota-
= \my il . tion of the rotor, it is
A necessary to exert the utmost

effort to avoid pitch damp-

Fig. 7. Pitch damping experi- ing caused by mechanical

mental apparatus, rotor with two friction. Therefore, the
blades. _ : following method was used
: ; to measure the rotor revolu-
1. Blade 5. Bearing tion speed and the pitching
2. Motor 6. Shutter angle. Please refer to Fig.
3. cds. 7. Cdas 7. The rotor blade (1)
4. Miniature which is turned by the motor
light bulb (2) is supported, along with

the supporting frame, by
bearings (5) and performs pitching. The light from the miniature
light bulb (U4) shines on the CdS element (3). Whenever the blade
passes through this space, the light is interrupted, and the
electrical resistance of the CdS element increases. The current /10
passing through the circuit in Fig. 8 into the vidicorder displays
pulse~like reductlons each time the blades pass through, and
pulses indicating the passages of the blades are plotted on the
recording chart. The revolution speed of the rotor can be dis-
covered by reading these pulses and the time marks. The pitching
angle was measured in the following manner. A douser which is
eccentric from the pitching axis was lowered down and was arranged
so that it would move vertically along with the pitching motion.
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Fig. 8. Device for measuring the

rotor revolution speed and pltch-
ing angle.

3. Miniature 7. Cas
light bulb 8. Light bulb

4, cas 9. D.C. power
6. Shutter source
TABLE 1.

The light quantities enter-
ing the CdS element (7)
would fluctuate as the
douser moved up and down,
varying the input current
for the vidicorder. On

the recording chart is
plotted the damping vibra-
tion curve corresponding to
the time changes in the
pitching angle. It was
confirmed by static calibra-
tion that there is a linear
relationship between the
pitching angle and the move-
ment of the bright spot on
the recording chart. Since
the time lag of the measur-
ing system is quite small in
comparison with the pitching

SPECIFICATIONS OF PITCH DAMPING EXPERIMENTAL APPARATUS A
(TWO BLADES).

Rotor diameter 1100 mm
Inertia efficiency around the pitching axis 0.105 kg/m/s2
Weight of the portion performing shaking motion 22.2 kg
Position of center of gravity (under the
pitching axis) 0.18 m

Pitching period 1.02 sec
Specifications of Mounted Blade A

- Profile *NACA 0012
Radius 550 mm
Chord length 80 mm
Lock number 4,436

1170 rpm

Flexural primary characteristic frequency

Material

Japanese cypress

period of lisecond, it 1is believed that the record indicates cor-
rectly the temporal changes in the pitching even in dynamic

measurements.

The 1ight bulb (8) is turned on by means of D.C.

in order to prevent the 100 c¢/s noise from entering the record.
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Measuring Methods

Before making the general measurements, the flexural pri-
mary characteristic frequency of the blades, the pitching period,
~and the inertia efficiency around the pitching axis are measured.
The flexural primary characteristic frequency of the blades was
measured by means of a Tamaru type vibration tester [29]. When
the righting moment occurring when the pitching axis has been
inclined and the pitching period are measured, the inertial
efficiency around the pitching axis can be sought with Eq. (1.1).

1= VAT (1.1)
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Setting the pitching angles of the blades at 0, 3, 6, 9,
and 12°, we took a time record of the rotor revolution speeds
and the pitching angles several times each, with the rotor revolu-
tion speeds set at 300, U400, 500, and 600 rpm for each angle
of incidence. According to the time records which were obtained,
the pitching can be regarded as damping vibration of a secondary
system. Thus, the pitching was sought by means of Eq. (1.2).

8M 2 I ln (az/al) : .
TR g—1ty - ’ (1-2)

Even when the rotor is not turning, a damping_ coefficient
of -0.002 kg/m/s is obtained for the value of 9M/38 on account
of the bearing friction. Therefore, this was subtracted from
the values obtalned by means of Eq. (1.2), and the result was
used as the measured value of the pitch damping. Vertical loads
in the opposite direction are produced in both bearings by the
gyro moment which occurs when pitching motion is performed by
the parts in which the blades and motor are rotating. There is
concern that the measured values of the pitch damping might
change because of this. However, when this was investigated,
it was learned in the final analysis that it is negligible. This
was checked in the following manner. First, the pitch damping
was compared when the motor was rotated with the blades removed
and when the motor was not rotated, and it was ascertained that
there were no differences. That is, it was learned that the
vertical loads applied on the bearings by the gyro moment pro-
duced because of the rotation of the motor do not exert any
influence on the pitch damping. Next, the load applied on the
bearings by the gyro moment which occurs when the blades are
rotating was calculated. It was found to be 0.21 kg even at a -
revolution speed of U400 rpm and an amplitude of 5.7°. It was
learned that this is negligible, since it amounts to approximately
1% of the load of the motor and the supporting frame.

19



Measurement Results

The measured values are shown in Fig. 9. The blades are
made of Japanese cypress, and twisting occurs during their rota-
tion. It is believed that there are divergences between the
set values of the pitch angles and the actual pitch angles. As
is clear from the figure, it was observed that the pitch damping
increases more rapidly than the rotor revolution speed increases.

The solid line in the
. A figure 1s the calculated
T ‘ values obtained with Eq.

N (2); the values are some
o 7g;fEV*ﬁ two to three times greater
kel A3 / ‘ than the measured values.
' o6 When the pitch angle is 0°,
;;: 2 the relationship between
-3k Bkl ’ 9M/36 and the rotor revolu-
tion speed is different /1
from that which applies '
when there are other pitch
¥ ; _ angles. It is believed
~02 2 ; that this is because the
I EL T state of the alr currents
% g : around the rotor is entirely
- ‘ different, as is clear from
. § : the photograph in Fig. 51.
—~01r B ' ’
S a
% : 1.2. Experiments with Three-
A J Bladed Rotors
0 ! L1 L B! L. The experiments with
0 1w 20 30 40 S0 60 three-bladed rotors were
performed by the same
Fig. 9. Comparison of the experi- methods and for the same
"mental and theoretical values of purposes as those with two-
pitch damping for a rotor with bladed rotors. A brief
two blades. Rp' = 0.55 m; b' = diagram of the equipment is
= 0.040 m; p = 1.02 ¢/s. shown in Fig. 10. The
measurements are shown in
Key: 1. Blade pitch angle ‘ Table 2.

2. Theoretical value

Experimental Apparatus

The blades, which are made of aluminum, have a small wing
chord and a great twisting rigidity. Thus, there 1s no need for
concern about the possible occurrence of twisting deformations
during rotation. The blade pitch angle can be selected at will
within a range of $16°. The following arrangement is used to
measure the revolution speeds of the rotor. As is shown in Fig. 11,
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Fig. 10. Pitch camping experi-
mental apparatus, rotor with
three blades.,

TABLE 2.

the light from the spotlight (1)

~going into the photocell (2) is

interrupted every time the
blades pass by, causing pulse-
like variatlions in the photocell
output. The photocell output .
is amplified and then introduced
into the frequency counter (6).
The rotor revolution speed is
indicated digitally here every
10 seconds. A damping meter

[8, 9] (6) was used to seek the

f.) ‘2

SPECIFICATIONS FOR PITCH DAMPING EXPERIMENTAL APPARATUS B

(THREE BLADES).

Rotor diameter

Inertia efficiency :around pitching axis

Pitching period

1800 mm
0.92 kg/m/sec?
1.323 sec

pitch damping from the time fluctuations of the pitching angle.
The pitching angle was detected by means of a spring and straight

gauge device such as that shown in Fig. 12.

Whenever the rotor

is inclined, the spring (1) contracts, and the leaf spring (2)

deflects.

There are fluctuations in the resistance of the
strain gauge (3) which is attathed to the leaf spring.

The

input current of the strain meter (U4) changes in accordance with

the resistance fluctuations.

After the A.C. components have been

amplified, the noise is removed by the low pass filter (5), and

the current enters the damping meter (6).

When a signal current

with harmonic vibrations which are damped in the manner shown in

Eq.

(1.3) are applied to the damping meter, it 1s possible to

take readings of the values of o and w from the numerical values

indicated digitally.

V(@) =Veeestoosar

In pitch damping experiments, the input voltage of the damping
meter 1is quite close to that given in the above equation.

(1.3)

, /12
There-

fore, the pitch damping was sought from the numerlcal values

indicated by the damping meter.

The experiments were performed for three sets of blades

with different Lock numbers and different rigidity.

The

‘characteristics of each of the blades are shown in Table 3, and
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a diagram is shown in Fig.
- 13. The B blade was a
hollowed-out plate, and
the C and D blades were
made of a framework
formed by hollowing out
a plate, to which aluminum
plates with a thickness
of 0.5 mm were bonded.
i : Both B and C plates have
i S the same NACA 0012 wing
s | ‘ section, but D is NACA 0018.
Since the construction of

I P C was different, its
é ; primary flexural charac-
Py teristic frequency was
24% greater than that of
L\ | T ' B. In D, there was an
d ‘ increase of the wing
thicknessy so that the
primary flexural charac-
3 teristic frequency has
/ \ : increased by 64% over
% that of B.

The damping of_thé
. f ‘amplitude caused by
T : bearing friction was

Fig. 11. Device for measuring rotor corrected in the same
revolution speed. ‘ way as in the case of the

two-bladed rotors.
1. Spotlight 5. Amp and filter

2. Motor 6. Frequency The influence of the
3. Blade I counter vertlcal loads applied
L. Motor on the bearings by the

gyro moment occurring
when the rotary parts

- perform pitching movement 1s negligible. The specifications of
the experimental apparatus are shown in Table 2.

Measuring Methods

The pitch angles were set at 4, 6, 8, and 10° for each of
the three sets of blades mentioned above. At each pitch angle,
the rotor revolution speeds were varied within the range of 250 rpm
to 450 rpm, and the pitch damping was measured. Since the rotor
revolutlon speed and the pitch damping can be indicated digitally,
as was mentioned previously, it was therefore possible to obtain
quite a large amount of experimental values. The primary flexural
characteristic frequency of the blade was measured with a strain
gauge. : <
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Fig. 12. Device for meaéurihg thew
pitching angle.
i, Strain meter

5. Amp and filter
6. Damping meter

1. Spring
2. Leaf spring
3. Strain gauge

|
.
-
|

Fig. 13. Diagram of éuﬁstruction of
C and D blades.

" Measurement Results

The measurement
results are shown graphi-
cally in Figs. 14-25,
with the rotor revolution
speed plotted on the
abseissa and,the pitch
dampin; 9M/99 plotted on
th@ ordinate.

The following con-
¢lusions can be reached
from a survey of the
experimental values.

1) The pitch damping
increases abruptly, rather
than inereasing in linear
proportion to the rotor
revolution speed.

2) When there are the
same pitch angles and the
same rotor revolution speeds,
the B blade has the greatest
piteh damping. It 1s ©
followed by the C blade
and the D blade in descend-
ing order.

CHARACTERISTICS OF B, C, AND b BLADES

TAELE 3.
B c D ‘qi
@ﬁg mmmmm NACA 0012 NACAOOIS |
%F 800 mi 800mm |
mmm 48 mn S48
; 1682 2.454 1.83
464 rpink

%;“*f M?mm

T

768 ipim

3) There are cases when the points are quite dispersed
in the experimental results and also cases when they are hardly

dispersed at all.
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Eig. 14, Measurement results for
pitch damping of three-bladed
rotors. Ro' = 0.800 m; b' =

nn

= 0.024 m; p = 0.756 c/s.
Key: 1. B blade 4°
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Fig. 16. Measurement results for

pitch damping of three-bladed
rotors. Rp' = 0.899 m; b' =
= 0.024 m; p = 0.756 c/s.

Key: 1. B blade 8°
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Fig. 15. Measurement results
for pitch damping of three-
bladed rotors. Rp' = 0.800 m;
b' = 0.024 m; p = 0.756 c/s.
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Fig. 17. Measurement results

for pitch damping of three-
bladed rotors. Rs' = 0.800 m;
b! = 0.024 m3; p = 0.756 c/s.

Key: 1. B blade 10°
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Fig. 18. Measurement results for
pitch damping of three-bladed
rotors. R,' 0.800 m; b' =

= 0.024 m;"p = 0.756 c/s.

Key: 1. C blade 4°
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Fig. 20. Measurement results for
pitch damping of three-bladed
rotors. Ro' = 0.800 m; b' =

= 0.024 m; p = 0.756 c/s.

Key: 1. C blade 8°
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Fig. 19. Measurement results
for pitch damping of three-
bladed rotors. Rp' = 0.800 m;
b* = 0.024 my; p = 0.756 c¢/s.

Key: 1. C blade 6°
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Fig. 21. Measurement results

~for pitch damping of three-

bladed rotors. Rp' = 0.800 m;
b' = 0.024 m; p = 0.756 c/s.

Key: 1. C blade 10°
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Fig. 22. Measurement results for
pitch damping of three-bladed
rotors. Rp' = 0.800 m; b' =

= 0.024 m; p = 0.756 c/s.

Key: 1. D blade U4°
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Fig. 24. Measurement results for
pitch damping of three~bladed
rotors. Rp' = 0.800 m; b' =

= 0.024 m; p = 0.756 c/s.

Key: 1. D blade 8°
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Fig. 23. Measurement results
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Pitch damping of C blades

at rotor revolution speeds in the
vicinity of U400 rpm.

b! =

1.3.

Ro!

= 0.800 m;

0.024 m; p = 0.756 c/s.

~4) In the B and C
blades, the pitch damp-
ing decreases consider-
ably when there 1s a
pitch angle of 10°. 1In
the D blade, it decreases

"when there 1s a pitch

angle of 8°.

5) In the D blade,
the increase of the pitch
damping together with the
increase of the rotor
revolution speed is much
more pronounced than in
the other types of blades.

In addition to the
series of measurements
already mentioned, the
fluctuations of the pitch
dampling were investigated
for the C blade by varying
the pitch angle from 4°
to 9° with a revolution
speed in the vicinity of
400 rpm. The results
are shown in Fig. 26.

In all of the experi-
mental values, the pitch
damping was much smaller
than the value indicated
by Eq. (2). This was
true in the same way as in
the results for two-bladed
rotors.

Aeroelastic Analysis of Pitch Damping

As was mentioned above, even when the other conditions are

exactly the same, there will be quite far-reaching changes in

the pitch damping when the flexural rigidity of the blades changes.
Thus, it is deslred to make clear the relatlonship between the
flexural rigidity of the blades and the pltch damping.
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According to the studles of Naito, i1t has been found that when
rotor blades having the same geometric shape are rotated at the /17
same pitch angle and the same revolution speed, the pitch damping:
will be greater the greater 1s the primary flexural characteristic
frequency of the blades. Furthermore, the pitch damping does not
increase in linear proportion to the rotor revolution speed, but
the rate of ilncrease of the pitch damping will be greater the
higher is the revolution speed.

According to the studies of Townsent, 1in blades in which
bending and twisting deformations do not occur at all, the pitch
damping is linearly proportional to the rotor revolution speed,
as in Eq. (1). :

When we consider these two facts 1in conjunction with each
other, it would appear that the pitch damping in actual blades
can be divided up into a portion which is in linear proportion
to the revolution speed and a portion which varies nonlinearly
with respect to the revolution speed. As Townsent assumed, the
former is pitch damping which occurs in rotor blades where elastic
deformations do not occur. It is generated directly by the rotor
surface's pitching motion. On the other hand, in the latter
case, elastic deformations occur in the blades together with the
pitching motion of the rotor, and the pitch damping is generated
through these deformations. The latter is powerfully influenced
by the primary flexural characteristic frequency of the blade.

Let us suppose, for the sake of argument, that the pitch
damping of rotors can be divided up systematically into these.
two clear-cut divisions. If this were possible, the former,
MeR, that is, the pitch damping generated directly by the pitch-

ing motion of the rotor surface, would be linearly proportional

to the rotor revolution speed. All blades ought to have the
identical value as long as the rotor revolution speed, the pitch
angle,:and the geometric conditions were the same. Let us con-
sider the method of abstracting these portions which are unrelated
to blade deformation from the pitch damping experimental data and
of comparing the values with Townsent's calculated values.

It was assumed that the alr forces operating on the rotor
blades can be calculated simply by means of quasi-steady two-
dimensional theory. This problem was analyzed by the Rayleigh-
Ritz method, taking into consideration the fact that bending
elastic deformations occur in the blades. We will consider
cases in which the rotating angular veloclty of the rotor has a
constant value @ and the rotor surface performs a sinusoidal :
pitching motion expressed by 6 = @ sinpt. We sought the bending
elastic deformations of the blades which occur together with
pitching. Next, we calculated the pitch damping from the temporal
variations in the moment generated around the pitching axis. It
is assumed that the air forces operate on the central line of the
blade and that the mass 1is also concentrated on the central line.
It is assumed that the blades only undergo bendlng deformations

28



but dningb bedeme elongated.
- A simple bending motion was
assumed.

- e

In Fig. 27, the XYZ
coordinate system and the
x'y'z' coodinate system
used during analysis are
shown in contrast with the
X41Y4Z4 coordinate system
fixed in space. The XYZ
system 1s a dynamic coordi-
nate system with a pitching

X b angular velocity 0. The
x'y'z! coordinate system is

rotating around the pitching
, axis and the shaft axis. Its
y i angular velocity is

X 1

/ 2 a dynamic coordinate system
{
|

: ‘di+ﬂk=f“0 cos giq*+Bsingojg*+Tke* (1.4)

Fig. 27. Bending deformations of

blades which occur together with The position vector r at a

pitching. , point on the blade can be
written as follows:

f=y,q,iq*+zq'kq*, E ’ ( l . 5 )

The velocity vector v at the same point can be written as follows:

A

/1

":(zl b sings, ’ﬁ/q"ﬂ) ig* ”
o+ (g 24’0 cos gg) fo*
(&~ ygl cos gg) ko* (1.6)

The length along the blade measured from the hub center toward
the tip is s'. When there are Q blades, from blade 0 to blade
Q~1, the kinetic. energy of the blade 1is:

-—‘ PR a“" _'" ‘
T=Z, 7}, eiras (1.7)

29



When the blades undergo bending deformation, the strain energy
stored up inside the blades will be:

=531, ey (1.8)

Next, let us consider the air forces operating on the blades.
It 1s assumed that the air forces operate vertically on the
center line of the blades and that they are within a plane includ-
ing the z' axlis. This signifies that we are ignoring the drag
operating on the blades, but this is because the contribution of
the drag to the pitch damping is a secondary microquantity. The
magnitude of the air forces operating on the portion of the blade
with length ds' is:

qu;is':pab’yg"ﬂ’(ﬂo— % ~1/q0ms¢'q+'v: )d ; (1 9 ) ’

The directional cosine vector with respect to the x'y'z!
coordinate system of the air force vector is:

: '—321'/ as’ fq*+ayq'/35’k¢

and the air force wvector is:

- beg e :
FAquI=(—FAq ;;" jq*+FA¢ a’:’ kq') ’ (1.10)

The bending mode function of the blade 1ls expressed as u(g). The
deformation of the blade at this time can be written as follows,
using the general coordinate f:

/ =S fy
; ' | (1.11-1)
i yq’z_-S'Soﬂ/i—(al‘/ds) .71 ds (1 11“2 )

is selected so that u = 1 when s = 1. S'fq is the

s
amount o% deflection at the blaée tip.
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We are here considering a case in which the rolling motion
of the rotor blade system is constrained and the rotating
angular velocity Q of the rotor is constant. Thus, we will
describe the movement in which the general coordinates are con-
sidered to be the fq, which are Q in number, representing the
deformation of the blades and the 0, which represents the
pitching. The virtual displacement Guq which occurs at-one point

(0, yq's 2q') on the blade when virtual displacements §fy and &6
have occurged in the general coordinates is:

Bug=r(fq+8fq,0430)—r(fq.0)
. - ayql az;q . .
=3f 8fods* + 7, 3fakq

Lt (387) X (vq'Jo* +2'gke*®)

As for the external forces operating on the blades, we con-
sider the alr force as well as the moment My which is imposed
from outslde in order to continue the pitching. The virtual work
is:

g -
b= ES Fo-Ougds'eh [Myj] - [36])
q' 0 SR’ - N . .

If we take the variations concerning 6f and 806, the general forces
will be: ‘ ' .

PN Ol IERT N W B

| Y= —Fug gt 555, (1.12-1)
.Q'=“:’§:FM S rieosdy
' Q-1 ’ - : -
S, a;/; Voo My (1.12-2)

The Lagrange kinetic equations are:

dgary o
: zf(af.)"éf:'“*'a”ﬁ“’g"f (1.13-1)
49Ty aT U _
' .dt(ad )ffé&‘+’349‘=g'.,> (1.13-2)
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x

When f,, f,, and 8 are minute, these equations can be written
approxgmatgly in the following manner:

: ”S:up(,,’dsf;-l-paS”QSl é—',- sy’(s)dsfq
{

1 +{ af So( 2 Yasds
(e

1

+mg:'£_i d \
o T S s cos g 20 i
|

: v
3 +PaS"S 5 {3 P20 — 502 —- 5 }ymds !

Q=18 Q-iest
P S Fuqs' cosgeds’+ F, S (—vs'z' P cos g
g=0J8 5’ g=0Jo .

1 1 (1.14-1)
=Suvsp(.,dscos¢q5 ~—2Sous;t(,, dssin ¢q!?6

‘ (1.14-2)
—VE,'s’ cos g +vs" cos? ¢y

—~2us"0M sin ¢q cos ) ds'=My

Thus, we have obtained the kinetic equation for flapping in
cases when a pitching moment My 1is given from outside to rotor
blades with constrained rolling motlon under conditions of a

uniform rotor rotating angular velocity and they continue sinus-

- oidal pitching 6 = 6 slnpt. We have also obtalned the formula
- to obtain the necessary pitching moment My. A3, Ay, D3, Dy, and
A3 are defined as follows. ‘

e ey
i A;EpaS"S —g,—,—-sy(,,’ds/ Slvﬂm’ds
f 'R 0

! 1 1

: A,.-—-‘:paS"S -b,TS’pmds/ S vitenids

Ky o

i Dx—-S vspends / S vp'ds

1

‘ dp !

D (o] P

A.==wpaS”S - g {s’!)’%—s’ﬂ-—s—, }pmds / S up(;,’ds
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If the downwash on the rotor surface vy has a uniform value
even when the rotor 1s performing pitching motion, the last term
on the right side of Eq. (1l4-1) will be uniform and will deter-
mine the coning of the blades,

In actual blades, it is extremely difficult to seek with
accuracy the EI distribution and the bending mode and to calculate

(oY afs’

Therefore, the following method is used. In stationary blades, in
accordance with (1.14-1), the bending vibration equation of the
blades can be written as follows:

S ,,,u(,,dsf+;,.SEI(j )d,f—o o (1.15)

The primary flexural characteristic frequency of the stationary
blades can be measured easily. If this is written as wpg, -

;!:3 = ;‘ ‘lEI( 3:’,‘) /S Vﬂm’df , ‘ (l. 16)

If we use wg and the previously defined Al, A2, D1, Do, and Ap,
Eq. (1.14-1) can be written as follows:

o "*(D”” o Ve,

.—Dmosqbqﬁ 2D, sin ¢QQ¢+Azcos<,:q90+A; i (1.17)

In the question of pltch dam 1n - the acceleratlon frequency is
approximately Q, and vDy + (wp?/92)Q is greater than Q. In cases

. when 6 = 6 sinpt, the particular solution of Eq. (1.17) is:

" fe=of; +f 8+ ﬁﬂ@; +0) +fon cz.;;(g&,,-}; pt)
+fs-sin(@g—pt) +fo- cos(¢q—ec) | (1.18)
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Here we use p = p/Q and write fgy, fo4s fgo» fo.sand of.

7 D 4p/2) (Detesd/P—(L+p)) + L ddpap) -
| fae= 2 g (1.19—1)

/ {Dyt+og/@P—(1+p)* P+ A (1+p)*
. ADP(+p/2) (14+9) + 3 Ap(Drtos/P—(U+p)) ~ .
»s fco- {1)2_!__(”}3,/‘0,__(1_*_")2}’_*_{11,(1_’_p)3 5 i (1 . 19—2 )

=DB1p(1—p/2) {Dy+wp¥/ D — (1—p)?} + -;:—A;A:P(l-—p)

fa- Dt or = (T—p) P T A —p)? g ¢ (1.19-3)
ADp(1-p/2) (1-p) + 5 Ap(Dytos/P—(—p)t}
fo-= Ds g/ = (1—p) P+ AP (=5} 5 (1.19-4)

f= —_—A : _
VS DR e
' (1.19-5)

of 1is coning.

If fy is found, Zq ' yq can be sought. Assuming in
(1.14-2) ctlhat 0 =9 sin pt .gLf we exXpress zg 's ¥q' using
fq, 1t 1is possible to seek My. Using the methog shown in Appendix
A, we can express the pltch damping derivative as follows:

o n/;»“‘ ,.“ )
, Abg—su Mﬁﬁuﬁw ) (1.20)

If we use Eq. (1. 14-2),

T pae/pQ-t ]
Mf"_ So qZ,nSs F,«,s 4 cos ¢qd5'/1’931>
{ paw/p Q-1 A
bSo qzos ("""zq Q’cosglvq—uqu cosgy - (1.21)
% s cos? $q— 25" sin g cos ¢g)

. Xds'dde/x8%p

The first term on the right side is the contribution of the moment
made up by the air forces operating on the blade, and the second
term on the right side 1is the contribution of the moment made up
by the inertial force operating on the blade.

When calculations are carried out,
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M,——-Q—pas'ms 5’—"—'—ds+ —Q-—pas'm

fs‘(l+P)+fs (1-p) ¥ oL
! % Smsp 5 ds /
o _%_ %0 fo+(2p+p=);£e-<—2p+p=) (1.22)

~
N
o

1
X S vpsds
0

The sum of the first and second terms on the right side of
Eq. (1.22) is the same as the first term on the right side of
Eq. (1.21). The third term on the right side of Eq. (1.22) is
the same as the second term on the right side of Eq. (1.21). At
first glance, the third term on the right side of Eq. (1.22) gilves
the impression that damping occurs even in cases when alr forces
are not operating on the rotor blades. However, actually, when a
is 0, A1 and Ap will be 0; and, as is seen in Egs. (1.19-2) and
(1. 19 by, fop and foo will be 0 Consequently, the third term on
the right side of Egq. (1.22) will be 0. In equations expressing
damping in systems with a great degree of freedom, inertia terms
are frequently seen to appear. The vibration damper [31] is a
simple example of this. The significance of this term has been
discussed in Appendix C. '

The pitch damping sought in the experiments described in
sections 1 and 2 corresponds to the entire right side of Eq. (1.22).
When bending elastic deformation does not occur in the blades,
the second and third terms on the right side of Eq. (1.22) will
be 0, and the only pitch damping coefficient will be the first term
on the right side. This 1s the pitch damping M§g which 1s :
generated directly by the pltching on the rotor surface, .which
was already described.

Here, let us define Kg in the following manner:

X

_%pasmgsl ssid.f"" Qpasysg fs+(1+P)+fs-(1—P) S #%ds
w

w S bp .
" Q gpLer@p+pY -;‘f"c (—2p+p* S vusds : (1.23)
KE= = ’3‘
Mg -—%paS”f)S' st—%,-ds

As u(g) here let us use

” m,,:zss_.is:.;._l.,a (1.24)

© o
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which satisfies the mechanical and geometrical conditions on
both ends of the blade and which is also the simplest form. If
we suppose that the chord length of the blade and the mass dis-
tribution are uniform, A, Ap, Dj, and Dy, will be:

73 pak'S’
| Ay T

91 v

_ 639 pab’s’

Kg is a function when the Lock number is vy = 6pab'S'/v, wg/ﬂ, p/f.
2

It can be calculated in the manner demonstrated in Pigs.

3 4 w2

Fig. 28. Effects of blade rigidity
on pitch damping.

7 M .
. KE—Mm R
; -

0 1 2' 3 4%/9

Fig. 29. Effects of blade rigidity

on pitch damping.
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to 31.

When the measured values
shown in Figs. 16 to 27 are
divided by the correspond-
ing Kg, we will obtain the
pitch damping coefficients
of imaginary blades in which
no bending deformations at
all will occur. The meas-
ured values of the pitch
damping coefficients were
divided by Kg and were then
rendered nondimensional by
using Eq. (2). The results
are shown in Figs. 32 to 43.
It 1s clear from these fig-
ures that in most cases the

-nondimensidnalized pitch

damping derivatives will have

a more or less uniform value
even when the rotor revolution
speed changes. It 1s believed,
on this account, that the
pitch damping can be sepa-
rated into two portions:

MBE, the portion which is

generated through elastic
deformation of the blades;
and MQR, the portion which

is generated directly by
pitching of the rotor surface.
Not all oR the values given
in Figs. 32 to 43 are the

same for all the blades.



The reason for this 1s
210~ 0.15 attributable, not only to
Y= 2 the measurement errors
.g accompanying the experi-
ments, but also to the
fact that the air forces
and the bending mode were
supposed in simple form
when K was sought.

0 . X ' ‘ It is clear from Figs.
0 1 ) 3 ey, 32 to 43 that the pitch
ST ’ damplng which 1s generated
Fig. 30. Effects of blade rigidity directly by pitching of the
on pitech damping. rotor surface 1is about one-
fourth of the value cal-
culated using Eq. (2). In
Egq. (2), the pitch damping
is calculated by means of -
strip theory, using the air
o forces sought by two-dimen-
S sional quasi-steady theory.
T Therefore, it was found that
- in problems where one is
seeking the pitch damping,
it is not appropriate to
use such a simple method to
seek the alr forces. The
; fact that the air forces
f ' ' , . 4 governing the pitch damping
0 1 7 3 ‘ Lon/g are about one-~-fourth of the
B v B T air forces calculated by two-
Fig. 31. Effects of blade rigidity dimensional quasi-steady
on pitch damping. .

Caption to Figs. 32-43. Comparison of measured values of non- {22

dimensionalized pitch damplng from which the effect of the blade
bending deformation has been eliminated with various theoretical
values.

A. Twe-dimensional quasi-steady theory. B. Two dimensional unsteady
theory. C. Two-dimensional unsteady theory including the wake
vortex. D. Three~dimensional quasl-steady theory. E. Three-dimen-
sional unsteady theory. F. Three-dimensional quasi-steady theory
including the effects of the wake vortex. G. Three-dimensional
quasi-steady theory including the wake vortex and also the fluc-
tuations of the blade distance.

General Key:

1. Experimental values
2 B (C) blade, ...°

37



~

“H€ 314
s e
005 00v 00g 0
T T )\.e
8 A—az8g " -
4
de-
W, e,
AT I R .
-»
J9—
o
(028 4) .
dg—
o 04
q )
Iy A8
= 8
o) .
g
40—
Vo L 4o9oxp/e
7

‘€€ 814
T gos WA g0y pog 0
T T T )\Jc
9 A—nsqg .
c
T v 4z
WX .o
f‘c‘u" 00’. 0.0. - P il . -
_r * E ] ..
[ .
4y
o]
Reln ]
] 9=

0"
- (o cled 145
W

g€ "314
77 gog w4 00¥ 00¢
i i ]
RFEFA: B
A
T
2 A .
ln oboo,.o.ﬂn.- hoo ‘.

o o 4 *

o Ou *

38



P

0
~
hm ‘wﬂm
008 wds oor 00¢ 0
Ao
9 J—1.L UN "
e |
» R .“......a....,“. wiol
o
09 i
o od .
9
/
S~ |
d /
4
. .
v .mge

*9€ *8Td
1 T T R(‘c
Jd=1c0" - g
c
. H g w R i A
- do uu < A w . 3
. - ﬁ no »
- “dl ndo -
.,/ N
A dv—
o 0D
a o4 J9—

i

0~

[0 h i 243

W

39

*GgE 314

- t%»mm”_ e e e
008 00y 008 0 ;
_ : : Ao
01 4—ncd N ~

2 .
.ﬁr% S, . e
R R

!
H e ‘o‘.
|
49~ |
M
;
1
|
48~
401~

Vo0
L7 7'4




~

oy *8ta  '6€ %w@ ‘gt *31a

L M LA 00 0 005 W o 00 AD  wdx S —
7 T T 4\/. 0 T T T 0 008 0¥ 00¢ A0
- i T T s 0
Y A—acLqg - - 3 .
g T WY . 8 d—as w : |
. 3.;“0.0*;‘ e 6.“0“00 3 1o P ; )
2T i ¢ / . %”.mﬁrwn . = -
* e o ey > ., A4
g , ST T
43 -
0 o9
o o4 Ho- 9 m
q {8 8= m
a / ‘
d . W
| = 4o w
v (Rt 4
(o2 cdad 213 W
(378 )

4o



~

: ‘814

oog 00y 00g A0
. T —Vo

A=n = o .

014 m: T W
whingg -
L

-
49—
Ho

-0~
0 (o i 113

W

» N: Y wlﬁm
s N
00¢ 00% 00€ 0
1 T T $ ﬁ
$d-1s4 T WEY o ]
C st e,
N LI A
\
dy—
o)
o 4
, do—
o o4
3 4
q
Q / I
g
v +40'
R (0K kL
) oy

‘1 *314
00s ™M or  oop o |
T — T V1o |
9 d4—-1cd - ‘
[ 4.} A
W ’Cﬂﬁiﬂt‘l‘\.“” . dg “
.3 \0&&00 :
0,‘:‘“’.0 M
1
. L
O
09 §
o o4 e
D
o~ | 7'
da 18- '
:
g - :
7 40
W YO 902H/E

W

41



M; /26

Moo _ theory indicates that a

unique air force generation
mechanism is present there.
- In Chapter 2 and beyond, the
3l _ . air forces governing the
, ) i pitch damping are sought,
j p=1.5%~_ 1 ; as:gming that bending defor-
p=1.0% g mations do not occur in the
| W=5%t>‘ Al blades, and the results are
2r ’ « compared with the experi-
v mental values shown in Figs.
32 to 43,
L 2 It has been established
Mk & fHEL: clearly that the pitch damp-
. B ing undergoes changes on
account of elastic deforma-
tions of the blades. Let us
ok o T e now show, with reference to
—_ rpm a concrete example of rotor
Fig. 44. Changes 1in the pitch blades, the manner in which
damping accompanying increases the pitch damping caused by
of the rotor revolution speed elastic deformation increases.
in a certain rotor blade. Figure 44 shows the manner
in which the pitch damping
Key: 1. Analysis takingiinto . changes when the rotor
consideration the rotating angular speed Q
bending elastic defor- is varied 1in cases when the
mation primary flexural natural
2. Analysis assuming a frequency wp of the blades
rigid body : is 1000 rpm and y is 2. 1In

cases when elastic defor-

mations of the blades do not
occury the pitch damping will be linearly proportional to the
revolution speed. On the other hand, when there are elastic
deformations, there is added a pitch damping increment which is
nonlinear with respect to the revolution speed.

When it is assumed that there are elastic deformations of
the blades, the pitch damping is a function not only of £, but
also of p/Q, wp/fR, ,y. In Figs. 28 to 31, the manner in which
the values of Mg/Me undergo changes together with fluctuations
of wg/Q and y in cases when the p/Q is 0.05, 0.1, 0.15, and 0.2.
It is clear that in all cases Mg/Mj 6 lncreases suddenly when wp/f
is in the vicinity of 1. Naturally, in the analysis performed in
this section, it was assumed that the bending mode is as shown '
in Eq. (1.24), and it would have no meaning at all in the
sections where wp/Q 1s close to 0. It is clear that in cases
when y is great and the ailr forces make a greater contribution
than the Coriolis forces operating on the blades, there will not
be any greater increase in the pitch damping caused by elastilc

b2



deformation. 1In Figs. U5 to 48 is shown the manner in which para-
meters fg_, fg4+, fo., and fpo4, Which represent the elastic deforma-
tion of the blades, fluctuate in accordance with wp/92 and y. One can
discern how the elastlc deformation increases as the wp/Q approaches

1l from a larger value. In Fig. U9 is shown the manner in which the
bending deformation of the three blades fluctuates together with

the paSSﬁge of time in cases when Q = 600 rpm, p = 2¢/s, wg = 600 rpm,
and y = 4,

1.4, Smoke Experiments with Rotor

Vortices are constantly being produced by airplane propellers
and helicopter rotors, and it 1s believed that the vortices are
present in a spiral shape in the wake. 1In actual fact, when a fly-
ing boat takes off from the water, the water spray collects around
-the vortex produced from the tip parts of the propellers, and the
sprial shapes are visible. On days when there is a high humidity,
the steam in the so-called tip vortex produced from the tip parts
of the blades of helicopters will condense, and it will sometimes
be possible to observe a splral shaped vortex [10].

. Gray [11] photographed the tip vortices of helicopter rotors
by putting cotton immersed in titanium tetrachloride into the
blades in order to produce smoke. -

Simons, Pacifico and /28
Jones [12] photographed the
tip vortices by spraying a

fil8 ; - fine kerosene mist onto the
P0=0.2 B : rotor.
y;é R Jenny, Olson and Land-
1+ =10 : grebe [10] have used ammonium
. /{ 2 3 ? sulfide to photograph, not
oL £ e only the tip vortices, but
U /- also the vortex layers on the
ik inside.
, It is known from these
-2 , - studies that the vortices gen-
- erated from the parts near
Fig. 45. The sin (§ - p)t the blade tips are caught up
components in bending defor- swiftly and from the tip vor-

. mation of blades. . tex. However, 1t is not clear
. : what happens in the wake to
) the vortices which emerge from
farther 1inside. The relative positions of the blades and the vorti-
ces have been dlscussed in cases when the set pltch angle of the
blade section and the revolution speeds have been changed, but it
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) ST e has not yet been made clear
sk . e how they change in accordance

e with the blade dimensions and
the amount of wash-out.

Thus, smoke experiments
were carried out concerning
three-bladed rotors. The
arrangement of the experimental
— ] apparatus is shown in Fig. 50.

f / The revolution speed of the .
- —1F . rotor was set by means of a

e frequency counter. The strobo-
. e S scope was adjusted at the point
T where the value of the rotor .
‘ revolution speed reached the
Fig. U6. The sin (2 + p)t prescribed value. Then the
components 1n bending defor- spotlight was extinguished,
mation of blades. smoke was produced, and the
photographs were taken. The
smoke was produced by spray-
ing air into liquid titanium
tetrachloride, introducing it
into a nozzle, and spraying

: : it out slowly from the rotor

- (4 * upstream. When this is done,
3 ) ; ‘minute crystals of titanium

N9=%2 ' o tetrachloride are produced

. 2l £=4 by the steam in the air. A
' ///ﬁfﬁ g vinyl pipe with many small
. {jggjﬁi'qo 2 holes with a diameter of 4 mm /29
) ' o~ ’ - - was used so that powder crys-n
\\\“~\N\\ , tals would not adhere to the

s
w
&
~
B

s : : - nozzle.
-1} . B e The rotor revolution
R speeds were 300 rpm and 400 rpm,
Fig. U7. The cos(Q - p)t agg testslwerefmage ﬂgthBElade
components in bending defor- §2ofha§gg1§§.° Pgoéogr;phs,of

mation of blades. typical vortices are shown in

Fig. 51. The vortex positions
measured from the photographs
- are shown in Fig. 52. Fig. 52a shows the positions of the tip.vors
tices. They are divided into three grbups: the 8irst layer,i.sec=;
ond layer, and third layer, beginning from the upper right. Fig. 520
indicates the position of the vortex in the axial directlon at a
position of a radius 2/3°R of the vortex on the inside. Like the
tip vortex, this 1s also divided up into three groups.

Ly



Models of the vortex in the rotor wake in the state of hover-
ing can be produced in the basis of the measured vortex positions.
Such models are shown in Fig. 53.

: ﬂo" :
S AT A AL
,-J:\/ 2 \/ \/ 8 \/ 10

A 21 7
ok m-f /\ VAN NIA
YADVAR C ARV I SaT2

A rad

4 3m7v+
Y\ VAN
2\/ 4\/ 6 \/s VIOX:r\/

-1t e [ &

(-3

—a.

S S 7
Fig. 48. The cos (9 - p)t Fig. 49. Temporal changes in
components in bending defor- bending deformation of blades,
mation of blades. ' Q = 600 rpm, p = 2c¢/s,

wg = 600 rpm, Lock number 4.

- D ) Key: 1. 0 blade
i ' 2. 1 blade
A h 3. 2 blade

\ﬁ | qﬁ T | L, Azimuth angle
A o .
T b

N \
Fig. 50a Key:
1. Photocell
| 2. Amp
— N 3. Filter
. | 4, Frequency counter

~ EK\ ! : 5. Stroboscope
" ! 6., Camera

7. Fuming nozzle
. 8. Container for fuming
Fig. 50a. Layout of smoke agent
experiment apparatus. 9. Blower
" 10. Spotlight
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(@) %
S
a1 S : — s Mt b oA
Fig. 50b. Diagram of the ~ =~ Fig. 5la. Blade wake (400 rpm, 0°)
method of illuminatioh and :
the fumiling nozzle.

i
| ' /
§ i

Key: 1. Stroboscope
2. Slit
3. Fuming nozzle

[ S 'R
' Fig. 51b. Vortex in blade wake
(300 rpm, 4°)
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Fig. 5lc. Vortex in blade wake . 0
(300 rpm, 8°)

" Flg. 51d. Vortex in blade wake
(300 rpm, 12°)
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TABLE 4.

OF INSIDE VORTEX

VENA CONTRACTA RATIO

| | 300mpm | 400 rpm
— ’ : S i . TR
radial |axial |radial laxial
direc- jdirec~ |direc~ direc~
‘tion tion tion tion
m1f | 0.943 | 0.111 | 0.950 | 0.107
4 | m2m | 0.908 | 0.240 f 0.912 | 0.228
A3M | 0.899 | 0.368 | | | 0.013 | 0.433
W1 | 0.935 | 0.136 0.934 | 0.147
©6° |2/ | 0.899 | 0.296 0.896 | 0.316
; 3@ | 0.874 | 0.492 0.869 | 0.524
‘ 41/ | 0.928 | 0.160 0.918 | 0.189
8 | 2K | 0.890 | 0.352 0.880 | 0.406
%308 | 0.848 | 0.617 0.825 | 0.618
1M | 0.921 | 0.185 0.902 | 0.229
o 10° |ss2m | 0.882 | 0.406 0.865 | 0.495
3@ | 0.822 | 0.739 . 0.783 | 0.711

. i

5
P4
.

RT ‘
Fig. 53a.

experiments

50

4" 300rpm

Model of rotor wake
vortex obtalned from smoke

/32

pAREL.Sueaiy

TABLE 5. POSITION OF TIP
VORTEX
\ T ! 300 rpm 400rpn:m T
{ — I n
— S ] l » N . I3 .,
radial laxial |radial hxial
direc~ Hirec~ |direc~ direc-
tion ftion |tion ion
g1 | 0.929 | 0.037 0.928 | 0.040
4 {m2m | 0.892 | 0.131 0.896 | 0.114
3@ | 0.861 | 0.254 0.871 | 0.205°
w1 | 0.916 | 0.040 . 0.916 | 0.045
6 |m2m | 0.874 | 0.149 0.877 | 0.135
w3 | 0.847 | 0.276 0.853 | 0.241
Clwmim | 0.903 | 0.045 0.907 | 0.052
g |sm25@ | 0.88 | 0.167 | | 0.864 | 0.160
w3@ | 0.833 | 0.296 0.837 | 0.278 ’
A1 | 0.889 | 0.05¢ | | | 0.897 | 0.057
10° | m2m@ | 0.840 | 0.185 0.848 | 0.180
3@ | 0.818 | 0.317 ! | 0.823 | 0.315

iR

-4

Fig. 53b.

4 400rpm

Model of rotor wake

vortex obtalned from smoke

experiments
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-4 7
z /R- 8 300rpm \ji
T Fig. 53c. Model of rotor wake

vortex obtained from smoke
experiments

R 1 3eom

—rFig. 53e. Model of rotor wake

vortex «obtained from smoke
_experiments

WHFig. 53d. Model of rotor wake

R

~,

!
1 8" 400rpm ~ l
1 / R e \’

vortex obtained from smoke

.experiments

9 1.0Y%g
) T

12° 400cpm \\{

Fig. 53f. Model of rotor wake

vortex obtained from smoke
experiments
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The thrust coefficients were /3U
caleulated using the flow velo-
city obtained from the models and

Cr o the wake sectional area, and these
0051 A 300rpm were compared with the theoretical
& 400rpm : BaAM, values forihovering rotors [13].

¢ 0573 / The results are shown in Fig. 53g.
004 |- : There is fairly good agreement at
, ; pitch angles of 4° and 8°. There
03k ! is much divergence at a pitch angle
A A ' of 12°.

002}
CHAPTER 2. ANALYSIS OF PITCH

001l i DAMPING APPLYING LOEWY'S THEORY [14]
l o As was mentioned in Chapter 1,
S s v S ronl Section 3, the air forces which
—_— collective pitch angle cause pitch damping in a rigid
Fig. 53g. Comparison of rotor are mugh smaller than those
thrust coefficlent calcu- which would be anticipated from
lated with the flow velo- steady two-dimensional wing theory.
city obtained from smoke As for the reason for this, the
experiments and the theo- following may first be mentioned.
retical values Since the angle of incldence of the
blade sectlion fluctuates on account

Key: 1. Theoretical value of pitching of the rotor, the so-~

) called unsteady effect results in

fluctuations in the phase of the

air forces, probably leading to a reduction in the damping. 1In
the case of a rotor, in the wake region near the rotor surface
there are present large amounts of shed vortices which have been
left by the preceding blade of previously by the blade under con-
sideration itself. Therefore, it is possible that there may be
produced on the rotor blade an induction velocity which is far
greater than that which occurs in the case of a wing advancing
straight forward. It 1is belleved for this reason that the ampli-
tude and phase of the air forces operating on a vibrating rotor
will fluctuate  over a broader range than in the case of a wing
advancing straight forward. This phenomenon was theorlzed by
Loewy with reference to rotors in vertical flight. In this theory,
the amplitude and phase of the ailr forces are sought as functions
of the non-dimensional frequency k, the ratio m between the blade
frequency and rotor revolution speed, and the interval h between
the vortex layers. As a result, when m is close to 1 and k is
small, the real part of the list deflclency function -- that 1s,
the portion of the air forces having the same phase as the fluc-
tuations of the angle of incldence -- willl be extremely small,
and there will be a decrease in the alr forces inhiblting the
blade vibrations.
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This theory was also compared with the experiments performed
by Daughaday et al. [15] and by Brooks and Silviera [16]. As a
result, it was learned that the phenomenon pointed out by Loewy
does really occur, and that even quantitatively rather good
results can be obtained.

Timman and Van De Vooren [17] have also devised a vibrating
wind theory in which the vortex left by the preceding blade 1s ;
taken into consideration. They have used this theory in analyzing
blade flutter in helicopters.

In this chapter let us apply Loewy's theory to an analysis of
piteh damping. In problems of analysis of the pitch damping of
rigid rotors, blade vibrations of the same frequency as the revo-
lution speed are subjected to amplitude modulation by vibrations
of pitching on the rotor surface with a lower frequency. There-
fore, the ratio between the blade frequency and the rotor revolu-
tion speed comes close to 1. Naturally, there is a small interval
between the vortex layers. For this reason, it 1s expected that
quite small values would be obtained if the pitch damping were
calculated applying Loewy's theory.

2.1. Introduction to Loewy's Theory

Before applying it, let us introduce Loewy's theory. This
theory attempts to derive, concerning rotors, the same sort of two-
dimensional vibrating wing theory as in Theodorsen's theory [18].
In a wing advancing stralght forward, it is held that the vortices
generated from a vibrating wing are left in the wing's wake, where
they line up more or less 1n a straight line. On the other hand,
in a rotor, the vortices generated from the vibrating wing are
piled up in overlapping fashion in the viecinity of the wing, pro-
ducling a strong induction velocity on the wing surface. The
characteristic feature of Loewy's theory is in the manner with
which these wake vortices are treated.

The blades are treated as vibrating foil, and a shed vortex
is produced from the rear edge every time there is a fluctuation
in the bound vortex. When the blade wing chord, the revolution
speed, and the effective angle of incidence undergo vibrational
changes, 1t 1s assumed that the amplitude changes in an extremely
leisurely manner in the radilal direction. For thls reason, the
events occurring at definite positions on the blades on both sides
of the radial direction are regarded as being identical from the
aerodynamic point of view.

Let us conslder a cylindrical surface at a vertical angle to

a blade which encompasses a definite number of vortex streets.
The cylindrical surface expands at a definlite azimuth angle in a
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radial position on both sides of a specific blade. This is shown
in outline in the diagram in Fig. 54. When there is little inflow,
there will be a small angle between the vortex streets and the blade
rotating surface. The intervals between the vortex streets will

be determined by the downwash at each place and by the ascent speed
of the rotor. Ordinarily, the intervals are not equal, but in
Loewy's theory it is assumed that they have equal intervals. Among /35
the vortices in the circumference of the blades, only those which
are near the blades are believed to make a major contribution to
the unsteady induction velocity on the blades. Thus, the azimuth
angle on both sides of the blade may be small, and the number of
vortex streets may also be small. On thls account 1t is believed
that the distant vortices have a small contribution and that it

is not absolutely essential to treat the position and magnitude

of the distant vortices with great precision. Thus, the cylindri-
cal surface mentioned above can be replaced by a plane expanding
to infinity on both sides and below.

Since each vortex street was
generated before rotation from
the g-th blade, 1t 1s defined as
Ynq+ At the same time, ynq also
expresses the circulation per
unit length. The lowest among
the vortex streets depicted in
Fig. 55 1s y3,1 when the rotor
consists of two blades, or vj,o
when the rotor consists of three
blades. In general terms, a
model such as that shown in
Fig. 56 is obtained.

On account of the viscosity,
a vortex will be damped with the
passage of time., However, we will
ignore the damping of the vortex
because the time required to
damp a vortex to a pronounced
degree 1s greater than the period
of rotation of the rotor.

Fig. 54. Shed vortex sheet in

rotor wake in state of hovering If 1t 1s assumed that the

wing has a small thickness, a
small maximum camber, and a small
angle of incidence, and also that
the wing displacement in the rotor axis directlion is also small,
then in accordance with folil theory it 1s possible to describe the
boundary conditions on the plane where Zy = 0, and the problem can
be linearilzed. A

(2.1)
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Here, vy is the unsteady component of the induction velocity, and
Vas 1s the steady component.

The standard blade is replaced by a disturbed vortex in which
the strength per unit length 1is .yy. The unsteady induction velo-
city induced on the standard blade 1s determined by the distributed
vortex representing the wing surface and the shed vortex. Let us
discuss the relationships between the induction velocity, the shed
vortex, and the bound vortex with partial reference to cases when
the blade performs sinusoidal motion.

The unsteady induction veloclty is 1nduced by the distributed
vortex representing the wing surface and by the shed vortex. How-
ever, 1f we consider a model such as that in Fig. 56, an expression
such as Eq. (2.2) can be written in accordance with the Biot-
Savart law.

,X--‘V : - b ['
| velei= 2ﬂ1 {S_b' T;fe_ ;,) de’

‘ = 1@, .

e |
el = S“‘ rng(t'—€) e f
g=lnmfd—o (I'—f’)’+("Q+lI)’(h')’

20 ral@—8) ,

AN s e @)

nw=l

(2.2)

Next let us discuss the relationships between vy ,Yggs Ynos

- and yYnq which appear in the above equation. The unsteagy bound
vortex of the gq-th blade 1s defined as T'q'. If it is assumed that
the vibration amplitudes of the bound vortices are the same for
all the blades and that only thelr phases are different, the fol-
lowing can be written. " The unsteady component of the bound vor-
tices for the standard blade in particular 1s written Iy'. ¥4
and Yg are complex quantities.

v .
e .
[ap— . L ey e
R . em———— ——
: e s — bt e e e s i e St .
— R inmamamt Baa S )
. ) b’
: ;—W ' ‘['¢'= S_,,radé'
Fig. 55. Two-dimensional model - /f Va=Taele! Fa=Tacle! (2.3)
of rotor blade and:returning .- [ Td=lact  I¢=Tyetutsio |

wake
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, A shed vortex is generated from /36
A & the rear edge of the blades every
T . time there are fluctuations of

I the bound vortices of the blades,

L_.,.;.,.M..y
= Qy b -
0.0 ’ f‘! L”“\«fﬁf}"‘“ ! and there is the following rela-
01 R (1) tionship in the vieinity of the
=~ — o n : rear edge of the standard blade.
02____ . $A2 ) e
| P " T, t)de'“i%.-dz:_mr retetdr (2.4)
. 0.Q1 I 7°-°—'(’_"£)/—-—-‘ —— ;:! '
IR T I T CY) P The following applies gener-
1 Rl e ally in the vicinity of the rear
= S edge of the g-th blade:

Fig. 56. Model and symbols for

rotors with Q blades por? ; .
| (8= g )= e

=—iwl,/etet+ddt

Key: 1. Foll
(2.5)
Shed vortex yp g(g ,£) in which the x' coordinate is E' at the

present time 18 a vortex which was generated from the q-th blade
a certain time At previously.

: ‘ /‘ ’ :
@, t)de'f SEL T
L m=—fwly eltet iq-udl) - ‘
o : (2.6)

Referring to Fig. 60, we find that At is as follows.

§ A=£E“~_ i . ‘
iy T (2.7)

Since d&'/dt = Qy', generally vnq(g',t) will be:

' _‘ iw['c i(ot‘+¢q—¢—v—_—‘—~——— .—o_..n)

(2.8)

Let us rewrite Eq. (2.2), substituting an(g st). If we con-
sider Eq. (2.3) at the same time, it is not necessary to consider
the term elwt., If we introduce a dimensionless frequency
k = wb'/Qy' and non-dimensionalize the length by the half chord
length, it will be possible to write Eq. (2.2) in the following
manner, However, I' 1s.T = Ty'elk/p!,
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Lt al® ., ikl 1 B[O 2 (% y(femeds & o3 o\ gy
Ya(z)= 2r S-; x—§ i+ 2r Sg xr—§ etiedt + 2r L,y;:x nz.:os-ue(q e o" )
z—§ (2 i(-en-ze z—§
*mgrregran @+ B O ) ] (2.9)

Performing complex integration, we obtailn:

(2.10)
Thus, Eq. (2.9) becomes:
1 (0 Falf) . kD= eit ww |
 vaey=—pf L8 gy B g MW cae (2.11)
Here,
S T ¢ G LI ISP _ SP YN TS S ST GRS . n—thﬁQ‘ :
W=z, E et b £ eoeirmin) (2.12)

- Songen [31] demonstrates that, if f(1) is finite, the solution
- of the integral equation (2.13) can be written as in (2.14).

g S . ‘
vu)*--*z*,—‘;sql';cﬁ_ﬂg‘de , A (2.13)

2 A=z (*  [118 _ow_,
fa=—zN Tz S-x =t =%
) . ' (2.14)

In our problem, according to Kutta's conditions, ya(1) = O.
Therefore, Eq. (2.11) will be written as follows:

=[]y 2 SO L
' fkl;’w RS ] (2.15)

Since there is the following_relationship between T and Y5, /37
we will obtain I' 1f we elliminate yg.

~ !

- e, 2.16
s P=elksilru(x)dx . ( )
' - of B nea
{ iak{-;— (L W) +iEa® B+ (8) +iJo(k)]W}
(2.17)
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W represents the contribution of the returning vortex. If
W= 0, it is quite natural that Eq. (2.17) will agree with Theo-
dorsen's theoretical equation. Needless to say, if we approach
closer -to k + 0, the denominator will be -1, and the equation
wlll agree with the equation of the two-dimensional steady wing
theory.

Next, let us seek the alr forces operating on-the wing. The
linearized Bernoulli's equation with respect to an unsteady cur- .
rent will be:

3{-" VvV a p
e A
b i W (2.18)

The relationship between the velocity difference between the
upper and lower surfaces of the wing and the distributed vortex
wlll be: A

a¢” a¢L b, r

FEE T

P

(2.19)

If we integrate from the front edge of the wing up to the point
under consideration, we obtain:

o —o=t\" Gt
o=t o (2.20)

If we compile Bernoulli's equations along two routes passing
through the upper and lower surfaces of the wing, take the dif-
ference, and eliminate ¢y and ¢, by using Egs. (2 19) and (2.20),
we obtain:

et to=—o[ Vi 40 37 e nae] ‘
P . EPTI J5 (2.21)

When there is sinusoidal movement, Ap can be written as Ap = Apel®wt,
Therefore, .

e L

APty »
; ‘*'—‘“—"“-?a(x*)-lk Fa(§™) dE* .
e S e (2.22)

When the calculations are carried out, we obtain the following
results.

llf(x*) ____.._{1 C'(k, m,h)l

i oy

1—x* 14§ &
X Hﬂs e RNCL.

|
{ ~2r‘[V[T:z? e 1 .
|

(2.23)
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Here,
Ckym, By =F'(k,m, h) +iG' (k, m, h)
- H® R +21 ()W
. {'!1"’ (k) +tH¥ (k) Ay (k) + 1ho(k)} ‘V_ e

(2.24)
‘____1_' . 124 Vi v1-2*™
41(-2‘,:6)_210? 1_1#5__1/1—:@{‘\/1'-35*2 (2 25)

C'(k,m,h) corresponds to Theodorsen's function C(k) in the case
of a vibrating wing which advances straight forward. At the
ultimate limit where h has been enlarged infinitely, W will
approach 0. Therefore, C'(k,m,h) will approach C(k).

2.2. Analysis of Pitch Damping

Let us apply Loewy's theory to an analysis of the pitch damp-
ing. We sought the air force moment generated around the pitching
axis when the rotor surface 1s performing sinusoidal pitching as
expressed by 6 = 8§ sin pt, in the same way as in Chapter 1, Section
3, and calculated the pitch damping from the time changes in the
moment. It is assumed that the blades have an extremely great
rigidity and that elastic deformatiori does not occur. When the
blade does not undergo deformation, it is clear from Eq. (1.5)
that the components of the blade velocity which are inside the
rotating surface are y'Q, and the components whlich are vertical
to the rotating surface are -y'6cosy. Amgng the air forces operat- -
ing on the blades, the steady components are unrelated to the
moment around the Y axis, as has already been stated in Eq.(1.28).
Thus, we will write only the unsteady portions among the boundary
conditions in Eq. (2.1)

" —y'Bp cos pt cos ¢ -

== yplcos(2+p) tHeos(@—p)l=va
; -7 (2.26)

In Loewy's theory, the wings perform sinusoidal motion with
a frequency of w, but in problems of pitch damping the wings
perform a motlion synthesizing two sinusoidal motions which have
different frequencies. However, since both the equation defining
the mutual relatlionships between the vortices and the equation
for seeking the induction velocity are linear, separate sets of
relative equations are obtained for the (9 + p) and the (2 - p)
frequency components.

/
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The equatlion for the relationshlip between the induction velo-
city(and ghe vortices 1s as follows, with reference to Egss (2.11)
and (2.12):

1 x—%
lkrg e-tket kel W, -
+ 2« Sx el 2 ethed o
: (2.27)
Here, S /38
Wt-_-";;in'o t(w tnwl—:-—-tnzpl-’—"—n kttnc+m)+ Z ei(—[ﬂtp]lg—n—k:nqn)
¢ ' : : S o (2.28)

The intervals between the vortices h' are determined in the
following manner [13].

'—W(1+$+gﬁ)'

The following considerations are entertained concerning the
phase difference Yy, between the standard blade and the gq-th blade.
Loewy's theory is & foil theory and always describes the boundary
conditions on the plane where Zy = 0. It also assumes that the
intervals between the blade and the vortex and those between
vortices are always a constant value h'. Consequently, when this
theory 1s applied to pitch damping analysis, it 1s a precondition
that the relative positions between the blade and the vortex
remain unchanged. Under these preconditions, the phase differences
of the bound vortices will be equal to the phase differences
between the veloclty components which are vertical to the blade
rotating surface. Thus, it is assumed that: ¢

(2.29)

'/’q 2’“1/Q ! (2. 30)

e .

ch(* —kth)j e‘(* ‘“'k*h)
-~ l—e‘( ~ --kin)
(2.31)

With reference to Eq. (2.17), the Ty determining the bound
vortices can each be written in the followlng manner.

inky [ UHD ke) +iHo® (k) 14U R +iJ.,(k*)]Wg}

(2.32)
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With reference to Eq. (2.23), Aps and Ap. can each be written
in the following manner,

4P (x*) ’ 1—a* 1+E (_:l_
\"“Eg—y‘,_ [1 —C(ksy me, 'l)]\/ 1527 S Tt \"3 yb’?p)

Q=S bt

If we carry out integration for'g, we obtain:

A ’ [

The amplitude of the unsteady components of the 1ift which operate
on the portions with a width of dy' at a place y' away from the
rotor hub is:

: — hltdv’ =.b”si_ ~dps (;n:")dﬁ:*dy
= ﬂpmpb"?[‘{c'(k* P M, h) + L }dﬂ
' (2.34)

Since the phase is 2mq/Q ahead of the standard blade, the unsteady
component of the 1ift operating on the g-th blade is:

L*'dv' RN . - PR et - ‘

e kaﬂpb"ﬂ’{C’ (kxyme, b+ -—-—-iz* }dyem«im /

.

The moment produced around the Y axis by the unsteady compo-
nents of the 1ift operating oh the blades_is:

Y;,_,, - -1 . . P .
C Mypsz zos :b”L.,ydycos(ﬂt+ 2;;’ )em’ﬂm

1pR% { ‘ |
\ - ;;;os 1bdl:..,?/dy(m(ﬂt+ 23 )e“""” (2.35)

In a rotor which is performing pitching and in which the
inclination of the rotor surface is expressed by 6 = ®sin pt, if
the time changes in the moment around the pitching axis 1s known,
it is possible to calculate the pitch damping by the method in
Appendix A.

ot 50

| 5 Mo (2. 36)
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Concretely speaking, when we write Eq.

M

2QpO5 R,

(2.31),

ad -

4 .

I‘?g 4
SR. Rz‘

% FPk.,m, h)+Fk_,m..h)

K

2

yay

When numerical integration 1s performed by Chebyshev's integration

formula [3],

i

; ] J
. (2.37)
Here,
¢(01)“‘4( ZERI )‘ Fikog,mo, hy)+ F(k_g,m_, by)’
\ ’ 2
\ X(;%é%%—mnhYﬁnh
\ 2j—1 ‘
b 2LI+1)

Fig. 57. Lift distribution
calculated using Loewy's
theory.

p = 0.756 c/s, 2 = 300 rpm,

In Fig. 57 is shown
the 1ift distribution of the

‘blade in the radial direction,

when the rotor revolution speed
is 300 rpm and the pitching
frequency is 0.756 c¢/s. 1In
Fig. 58 are shown the results
of calculations of the pitch
damping for various angles of -
incidence when the pitching
frequency was 0.756 ¢/s. 1In
particular, at the extreme
limit where W approaches 0,
there is good agreement with
Theodorsen's theory, and the
data are shown in the figure
for the sake of comparison.

In Figs. 32 to U3 are
given comparisons of the values

“estimated fromthe experimental

values when 1t was assumed that
elastic deformation of the

blades does not occur and the pitch damping values calculated by

means of Loewy's theory.
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The calculated values are much
M/ larger than the measured values, but
Faxob R0 they are smaller than the values from
-1.0 Townsent's theory [7] or from Theo-
dorsen's theory [18].

™

Theodersen

As the rotor revolution speed
increases, the calculated values
approach closer and closer to the
experimental values. This is because
the ratio m between the ‘frequency
of the blades and the rotor revolu-
tion speed approaches 1.

-4k 16 % ~ The non-dimensionalized measured
o values will not change even when the
- { rotor revolution speed 1is varied, but

L : : the calculated values will decrease
-2 3 as the rotor revolution: speed is
increased.

; Within the range of the calcula-

! ]

1 1

0100 200 300200500 60000 | tions performed, there are not very
. rpm / many dififerences in the calculated
Fig. 58. Pitch damping : values even if the pitch angles of

calculated by using the blgdes are changed.

Theodorsen's theory and

Loewy's theory It 1s clear from the results

given above that the pitch damping
cannot be explained adequately in
terms of Loewy's theory. However,
it was confirmed that it is possible that the vortex in the wake
may possibly reduce the pltch damping to a conslderable degree.

A pronounced reduction in the air forces cannot be calculated,
unlike the case when analyzing the blade flutter [15, 16], because
m does not approach close enough to 1.

CHAPTER 3. ANALYSIS OF PITCH DAMPING APPLYING THE THEORY OF
ASHLEY ET AL.

In Fig. 61 is plotted the 1lift distribution of the blades
in the radial direction as calculated according to Loewy's theory.
Since Loewy's theory is a two-dimensional theory, the air forces
will not become 0 at the blade tips. However, in problems of pitch
damping, the moment produced by the ailr forces is quite important,
and it is necessary to be able to seek accurately the air forces /40
in the vicinity of the wing tip. For this reason, there arises
the necessity of using vibrating wing theory with a finite wing
span in the calculations.
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Ashley et al. have compiled a theory for calculating the air
forces operating in cases when the rotor blades of helicopters
are vibrating. This theory is an expansion of Reissner's theory
about vibrating wings with a finite wing span [20].

Ashley et al. have also compiled a theory for calculating the
air forces in cases when the blades are not vibrating, taking into
conslderation the fact that the wing span is finite.

In this chapter let us first introduce the paper of Ashley
et al. Next let us calculate the pitch damping by means of wing -
theory taking into consideration the unsteady and quasl-steady
finite wing span. It will be clarified as a result the degree
of influence exerted on the pitch damping by (1) the effect of
the finlte wing span, the (2) the differences between the unsteady
treatment and the quasl-steady treatment.

3.1. Introduction of the Theory of Ashley et al. [19]

This theory aims at expanding the "theory of vibrating wings
with finite wing span" derived by Reissner [20] so that it can
be applied to cases when the values of the:main stream fluctuate
in the wing span direction, and at applying thls to helicopter
rotors.

Let us focus attention on one of the rotor blades. There 1s
always a vortex emerging from the rear edge of this blade in the
wake. The vortex expands behind the blade, forming a plane. The
vortex plane 1Induces downwash on the blade. If we assume that the
vortex close to the blade makes the chief contribution to the
unsteady components of the downwash on the blade, it will be suf-
ficlent to focus attention only on the vortex within a very limited
azimuth angle behind the blade. It 1s supposed that the vortex
layer 1s inside the rotor rotating plane. Furthermore, since
the blades are rotating, the vortex plane assumes an arc shape.
However, within the range of the small azimuth angles, it may be
regarded as having a linear shape vertical to the blade. If we
assume that it 1s not necessarily essential to treat the position
and magnitude of the distance vortices with great precision, the
vortex plane will begln from the rear edge of the blade, as shown
in Fig. 59, and will assume a band shape expanding towards the
rear into a '‘semi-infinite distance. In cases when there is a small
inflow on the rotor surface, the vortex plane left by the preceding
blade will be present, as was already mentioned Wefore in the
section devoted to Loewy's theory in Chapter 2. However, Ashley
et al. proceed with their discusslion wlthout taking this returning
vortex into consideration.

When one 1s dealing with vibrating wings with a small wing

thickness, a small maximum ocamber,, a small angle of 1ncidence,
)(l
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and a small maximum wing displacement in the Z4 direction, the
problem can be linearized 1f the boundary conditions are described
by the so-called foll theory in terms of the projection of the

wing onto the Z4 = 0 plane. The boundary conditions are as
follows.

! a 7
_8_;—_:_ + V(v')-é,ﬁ- =va-+vas

(3'1)

Here, vy represents the unsteady components of the induction
velocity, and vgg represents the steady components. 1In pitch
damping problems there is no need to consider the steady compo-
nents. ’

In cases when the blades are undergoing sinusolidal vibratilons,
Vy can be posited as va(x',y',t) = va(x',y')elwt. The intensity
of the unsteady components of the vortices in the wing chord and
the wing span dlrections 1s represented as y and §, as is shown in
Fig. 59. Subscript a is added to the values on the wing surface,
and subscript w is added to the values in the wake.

re (8,0, ) =Fa (€, 7") glat \’

38,7 ) =8, ) et

rw(®, 7, ) =Fw (& 7)et=t
by =By @ )

The bound vortices will be Ta'(n*,t) = Té'(n')eith and the follow-
ing relationship will apply between §4(E',n') and Ta'(n').

o= s
T ‘a. S"‘ e * (3#2)

In potential flow, the velocity induced by the vortex can be
sought by means of the Biot-Savart law.

dg'dyf

NS a8, 1)~ 814 3 (&', 1) [0/ 1]
Pa(x, ¥) = y SSR,; Fa [(xJ_e/)2+(y/_,”l)z]3/2 '
' 1 g0 @M= 8w @ DWW gy /41
~-z;;SSB,, (=8 + -7
N - (3.3)

The following relationship applies between the shed vortex
in the wake and the bound vortex. .

I A
o MwlEndte - —55dr (3.4)
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1 . e If we assume a sinusoldal

i i’w(e’,v’)=———ﬁ’- (7)e”" T
V 2 G
w ! «. (3.5)
R, : :
" ; ' Since 3y/9n' = 38/3E', and
. |9 . also since y is not present in
% | front of the front edge of the
i wing,
b, ! 2 o
, 2 ; e, n')-——rse Fali, ) da*
T Yo : o (3.6)
& FH ;
b @ =g (et + L nas e
: ;.L-\ ary | a cv b —tw ozt
‘ - ! = tar ooy ) Feae e a
\ ' (3.7)
R Let us further posit that
. T(n) = To(n')/bg'-eluxt’ |
S V * & V(T} )
Fig. 59. Model and symbols
for wing located in a current @)= _103?3_ —f«~#%—‘— :
in which the main stream v ,}“') AT RS (3.8)

velocity fluctuates in the
wing span direction

Sy @)= 7&.,'1'(7)’)42"" 4+ q,s ( iohy_ e ‘Trmdz* 4\

. Yy

—b [r(#)e-f'—v‘—r] | .

S e (3.9)
If we substitute Egs. (3.8) and 3.9) in Eq. (3.3),
U RN @Y=

va(x',v)—”'F‘SS 24 [ —&)+ (7 —7) TP addy ;
-t ’ -t —
ey T e L Al it s
in [@=E7+ =773 | (3.10)

The terms on the right side of Eq. (3.10) are expressed as Il,
12’ and 130
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1 Pa (&, ) —&1+3. 8, Y —7] .,
—'?4;‘83 dt'dy

[Z—8) it (7 —1) P
A P Fer |-
{f,, —~ »
rw [E—OT—PTA

A dg'dy

it

e ff PV - T gy,
ey T @V G

If we write Eq. (3.10) using I3, I, and I3, we obtain:

tale, V) =li- 2 i) (3.11)

% .expresses the contribution of the vortex with the replaced
wing surface. I, expresses the trailing vortex in the wake, and
I3 the shed vortex in the wake.

A few modifications must be made in the physical model in
order to make Eq. (3.10) more suitable for mathematical opera-
tions. Two of them are exactly the same as those carried out in
Reissner's theory, and the other one is peculiar for cases when
the velocity of the main stream changes 1n the wing span direction.

(a) As far as the effects of the vorteces with the replaced
wing surface ya(E', n') and §5(E', n') upon the induction velo-
city va(&', n) are concerned, the vortices with the replaced wing
surface are handled as if the wing were a two-~dimenslonal wing
having everywhere the same load distribution as the aerodynamic
load distribution in the wing chord direction at the y' position.

@)= ‘ /42
E NCR I GRS

""1 z¢ b (e’ 1/) Y

he 2r sz x—§ d (3‘12)

,l

In helicopter blades, the wing span 1s great enough in comparison
with the wing chord, and events on the wing surfaces do not differ
very rapidly on both sides of the point where the induction velocity
is to be calculated, with the exceptlon of the vicinity of the wing
tips. Therefore, it 1is believed that a simplification 1ike that

in Eq. (3.12) is not altogether impossible.

(b) The pattern of the trailing vortex in the wake is expan~
ded from the rear edge further into the wing surface,as far as
the line in the wing span direction passing through the points

(x', y') where the induction velocity is to be sought. That is,
o
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in I,, the integration zone with respect to &' is changed from
Xg' > » to x' + o,

TR N
rege | PTG =)
SWL' @+ @—-nT"

wl’
R dlP(y) sz (fee VO W11 ) 40
Sx,' —ar ¢ " {So T - % } 7

al’ -
CeB o d T 1 T —mm (0 WA=l TET )
~iof PO~ [’”V(T;'T]" o || e ] 7

Ig dy d’)’

(il

I

(3.13)

(c) The portion corresponding to the difference between the
pattern of the shed vortex in the wake and the position in the
wing span direction where the induction velocity 1is to be sought,
that is, the shed vortex at y', 1s expanded as far as the line in
the wing span direction passing through points (x', y'). Further-

more, in this portion, the wave length factor \f¢ﬁ§£ 1s replaced

by the wave length factor at the y' position, iz .

In cases when Ig = 13(2) + AI3, it 1is assumed that I3(2) is
the pattern of the shed vortex at y'. With respect to AI3, the
integratlon zone changes from xg' + « to x' + o, and -2

changes to e%% . The change in the wave length factor is
pecullar to the theory of Ashley et al., in which the main stream
value changes 1n the wing span direction.

PR g kT ] o o —(W—'e'
. e ra) e v ['—4] " ,=' 2I'(y) ¢~ e 1] d;
I,(:),_:S_”Sz" V&) [(:1:’—5’)-{-(}!"'7’7')233/’,‘1‘ dy V) Sz;: x' g i3

—

(3.14)
AI3 is sought by I3 - I3(2), but let us rewrite slightly I3(2) and

I3. Since T(R1') &nd T(Rp') are 0

2ly) _¢r_d [T | v=7) ..
B (ol W el w=r , )
» 3.15
Eq. (3.14) can be rewritten as follows.
o (P (" _d [ L) | e T w=vl |
L ‘Sa,'s,.. V) OGN _ " (3.16)

In 13, if we perform partial integration for n', and utilize the
fact”that both T(R;') and T(Ry') are 0, we obtain:
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3 [ 2 I(y) :
L= Seo Ry 5711 [e vr') V(ﬂ’) ][”"—-”] demd
= zc'SRx’ [ -8Vl =8P+l -7 *
: (3.17)

Subtracting Eq. (3.16) from Eq. (3.17) we seek AI3. At this
time, the range of integration is set at x' »+ =, and the wave
length factor of Eq. (3.16) is changed from PR to v .

A s e

A [V

3 [ st dl'n) Y, e
AI'-"—'SR"Su 1 {T"'/ “_e VT - -d’l' ][?/ -] _ e Vo) " 7L V(ﬂ’) }de’dp)’
acde T ViZ =P +y—71 ‘ 71
(B e d D) Y[ e> LT Y-y W=, 2 )
"me'e e ) dr [ Z59) ]{ Su 1": VI (Y ~7)? v—7 ]e ' ('7’ .dl}d” (3.18)
Eq. (3.11) is rewritten as follows.
= T (3.19)

It is clear from Eqs. (3.13), (3.14), and (3.18) that the second
term on the right side does not contain £'.

Let us carry out the integrations contained in I, 13(2), anad

‘AI3. Variables q, T, A1, and A2 are introduced.

’; =‘" W(y'—-ﬂ') = w(!l""'ﬂ') - t /’43
LETVD =TVE) ;.,
P ol 1=-ﬂ_ ) "
vy TV .
(3.20)
We rewrite Ip using q, T, Ay, and A3.
T L) e i (e ety ,
L= Sw A So o di
Yol B
' ) M+ _.f’_....]qc-n, "
C e a1 e (e T o
ot gy ) |, BT (3.21)
We rewrite AI3 using q, 1, Ap, and ).3.
S e dlr) waﬁwﬁ‘w{¢Jm:”"
i o i R W e o
Ry’ d 1 —g e pw ] ot ~le e .
B N o R B 7 o e AR & B

Vs
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The functions appearing in I, and AI3 are defined as follows?

o 1;8"“‘

Wt =l g

e e

- Na@=af] g
¢ ‘f‘ "fli
Nt ={; [ VR ]

(3.23)

The methods of calculating NA(q), Ng(a), and Np(1) are described
separately in AppendixIS _ ,

The nondimensionalized variables are introduced as follows.

o yy PSR -
o=y v*%%
X’,l = x— (x¢'+.’tl’) /2 e- e'___ (x¢r+x‘,)/2
: ’ ¥ = 15
. x2’+$l’ ‘ |
R T T
. ‘ o5
' o o (3.24)

Four types of reduced frequency are introduced.
wv(y)' _ _ob()

k@)= k=
WS VEy VW’ ‘ . (3.25)

Io can be written in the following manner.

(B Al 0 geayaemtnzad e i .
R M . . I
. (R d [ 1 7 -qemoskotnzmd oay i
—in P | O (N, ey — a1+ k) 2+ ks () I Na e Dy — 1l
Cm Tl Ve S / TR (3.26)
AI3 can be written in the following manher.
e (R A 1wt o ly—1D s
. zﬂ's-—,-—Sm > -V(-’;j-e Ne(ko(n){y—1Ddn \
R d T 1 7 -rmatkemzmdpn _
~Jur G [y T Nethts=bda (3.27)
".The right side of Eq. (3.19) is:
TR W v ) 1 taltn)
N ‘-“Sn 1"-5' di'== T S—l 3""6 de (3-28)

2r

- e S
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In view of Eg. (3.1h4), 13(2) is:

2l (y) g= e-tlrwErhonIzm]
I:m____v( 2 S — dE .
(3.29)

If we substitute Egs. (3.28), (3.26), (3.29), and (3.27)
into Eq. (3.19), we obtain: (

w p-tk(y)E.

1 S‘ o, v) de— Va2, ) + —5— 'k"m f(v) ""’("""Sl =t

P23 -1 z— E dE

~

1 ¢B2 dl [ -teamz +,(‘m]w_~ ST
TSR; aﬂ*ko(ﬂ) i m V) Ns(ko(ﬂ)[ll—n]) \\

ie- T Em k) Nc(kn(v)[v—v])}dv

_iko(y). [ gg)) ]{e—‘fh‘”"m*"‘”’”wa‘<NA(ko(ﬂ)[y—vl)

L 4x SR; ()
ko) zn+k (1) 2] V?’g Nathi(ly— Y-e PO Noha()ly=1D

i

(3.30)

Since ya(l,y) = 0 according to Kutta's conditions, it is possible
to apply Songen's inversion formula. Before this, let us intro-

duce the following operators.

"’T‘”" ko(ne™*o Y Ny oty { - Jan

1
=5V
_"_SR' dr ko(n)e “"“""”"‘Nc(ko(v)w—v]){ }

IS

3

)
()
1)
-
s

b. ‘

=2 (" P2 [TV,—E’-;;—]&"““’”“ vor N.M(n)tu—-m{m}d»
|

I‘
_tko(y) V(@) 1. -tomem2 V() , - d
R
d
7

=)

Ii

P

ot (1) [ e~ Nethoty-n -

S

If we write Eq. (3.30) using operators Dl, D2, D3, Dy, and Ds,
we obtain: ’

= e+ e < v SR Sy

"{DH-Ds} {e-mm}+D.{[komxm+k(v>x3e“*"”TL"‘.) } } 2

. - O (3.32)

If we use SOngen's inversion formula, we obtain:
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~.r¢(z.y)=——i_ _.l:_w<S‘ _JTEE )

1+z i—-¢  z-¢
iko(y) - 1 JTFE 1 = emtrom
+ o ['(y)e tho(y) 2 S_‘ = - Sl 3 dide |
Dy—D 1 1+§ 1 -!k(y)e_;(l). 1 ité i ) .
—{Dy— a}{s J <=5 ) de}—w,+D.}{S , , } ‘

RS A K
+oaff’ JIE *}T[ko(v)xm+k(v)€]e"““”T‘Lde} ‘

(3:33)

However, when we use Eq. (3.2), we obtain:

S ol ¥)dz'=b S Ta(x,?/)dx—-r o (V) =bd e“["("’“*""’mlr (y) (3.34)

Let us rewrite the second term on the right side of Eq. (3.33)
for the purpose of integrating Y,(x,y) from x = -1 to 1.

-

Sl_l 528 I'S”mdxde_s —mst_ﬂ/ 1+_' L1

—§ xz—¢ h & R 1§ z—¢ -1 d¢
Thereupon, )
—E-‘*g- xl §-1 m z—§ + 11—-.1: ‘\/ £2 fe
'S-x "'E:—é for —1gx<L1
S aie_.;;.ﬂ.tf(J%’??rT*l) o 121
/ S 31?—?—;- xie S”i’f_"idzde_g T-_,{\/ BT, g
/45
- Therefore, -

1k ) - TFE 1 ¢ e-tkom
;ﬂ —22 P(y)e iko(v)zms ,J = 6 x“fs 3 di

~tkWA
4

LOR iko('ll) p(y)e-cko(y)xmsl = ‘\/T—"e

If we use this, we can Write Eq. (3. 3ll) in the following manner :

- i+E U e, ik o T*
7¢(—rr7)—"""‘ 1+; S lt:. a( ﬂ) dé+ : n(y) P(y)e-fko(ﬂzmsl 1 T_“¢"“w‘dl

FE 1 - vy E
Rl """""TL" } ~wesoa [y xié TE L (3.35)

1 3
f’{f”{j_, ii xle ho(9) 2w+ A (1) E1e ™ - d8}>

N
P
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Eq. (3.35) is substituted into Eq. (3.34) in order to elimi-
nate y;. At this time, the following integration 1is utilized in
order to integrate y,(x, y) from x = -1 to x = 1.

Sil‘/%—i_% _.E'.l'_'é'dx=“‘“ for '.:i§e§1 ’
| Sx.:‘\/ TFz T}Zc“’”":"‘(«/ %ﬂ) for 221

A

Therefore,

4 1 &~ .. ' oo 'T—‘
_%_e—itk(v)zuo(wzm]l‘(y)=2S «/%—jrvﬂ(e’ v)d&'-}-iko(y) [’(y)e—iko(v)xmsl (1’_ J _1%’_11._ )e-"c(v)l di ,

-1 -
—2{Dy— Dy} {Sl—x'\/ %e '"‘(""’r’%';‘de} —2{Dsy+ Dy} {Si-x J %ie—uwn d&} '

sty I RAL
+??‘{S,-l L e zn ke Far ) (3.36)

1

Since parts of the second term on the left side and right side of
Eq. (3.36) are identical,

‘zS‘_IQ/-E:?vG’, Dde=—ita) I @ e-ttansn | [T - wams
Yo -2{D,—-D3}{siiJge“*‘”"%dé} —-2{D,+D;}{Sl_ﬂ/%f_-e~mmde -

S el R et

(3.37)

The integration appearing on the right side of Eq. (3.37) can
be expressed using Bessel functions.

" S:«/ T'Tg;’;"‘ 3‘=(—§—,-— ﬁoﬂ) (%) ;§H,(=r (k))”
, S‘- 1 J%?e—cted1= (aJo(h) —nidi (k) |
Sl_l«/%::fe““df=u(Jo(k)— 1+ik Jn(k)) .

The right side of Eq. (3.37) is expressed by means of Bessel
functions, and both sides are divided by ﬁh@)é;;ﬁ;aynawn+ﬂmﬁdw”)
’ 2 —

~Further, we return the operators such as Dl and Dy, to-their
original forms.

73



e~ ko) Zm Be dl V(1) -itetmem-E2L
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(@)
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xNatho )ty =1 [ 0) 5 0-) (k) 0~
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+ [ Hy® (k(y)) +iHy® (& ()] S Vin) - '[W]e ko) em 5 25

c~tkolzm S

N 14
=i EL® (E(9)) +7Ho® (k(1))] v

R
"iP ) —j—’;,—[

Ry

XNB(ko('I)[y"")]){ko(ll)xm(-fo k() —%%)—i],(k(y) J‘j.(f.g_))_))

/
/
!
'

| f4: Vv
+k(v)(Ja(k(y) 7 ) () Ak H2 ))}d,, /

V() Viy) v
JORMUE @
— ekl zm Ry g I Viy
, [ Hy® (R (y)) +iHy® (R (y))] Sml dy L V(y)
X Ne(ko(w)ly—aD) {Jo(k(v)) —iJy (k (v)) }dn

_— e~tko)zm Ry d V)
w[Hy™ (k(y)) +iHoy® (k(v))] SR: T hd?[ Vin

X No(o@)ly—1D) (Jo(k(y)) —iJy (k(v)) Yy

]e'- iko(V)xm

]e" tko(y)em

(3.38)

If we solve Eq. (3.38) while considering that’?(y) becomes 0

when y = Ry and y = Rp, it will be possible to seek the distrlbution
of the circulation along the radial direction of the blade.

Here,

. ot -
POy =4-Y e-thoty S_,V Ti:";-vu(e.zl)dé
oY P 2 \ ’
| (W) =d—oe-tho@ "‘ 2k (DD (k) + i Ho® (& (9))]

4

(3.39)

As is clear from the process described thus far, this is the
equation expressing the circulation which appears in two-dimensional
¥ibrating wing theory.

Next, let us seek the unsteady air forces operating on the
wing. The following relationship applies, in accordance with
exactly the same thinking as that when Eq. (2.22) was derived,
between the pressure difference between the upper and lower wing
surfaces and the distributed vortex with the replaced wing
surfaces.

s PN C RN
= tatat - .k(v)S_J.(g,»w«‘zer (3.140)
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Let us carry out the integration of_the second term on the

right silde.

We will use Eq.

(3.35) for ¥a.

N

§ e ‘__ 1
Cnenndea- 21 T (" TR ~srgdndt -
k)l I+1 —FF '
\ R CL m(v)zmsl e~tkint lil S J i+‘:* ; 1@ 7
.. . 2 i .
+0-pi(f . et N )
1
2 I3,
+-——{D +D, ~tkipe {5 <& 1 d
vDa{f_y4EE a=a vt “'de}
-——-—D - LU a7
‘f{S_!xl—i—-:—{ko(ﬂ)xm"'k(ll)e]e R ANV o o)
(3.41)
Whereupon,
iy o e
d LTI ~1 o ¥
,S-;Z/,.I.Jr_ﬁ N (2 Haiglan )”\[Tr”'(“ O for ~1stsi
Here,
l’l(x’.e) '“l"gl 1-—.1:"@+1/i Ei,/ —x'i
~2%—v ’Vl—x*
- e
S JW - E* l‘t“"“"‘”"~”""~1-7'¢‘1"" *}—E—il—lfg(x*,z) for 221 ‘
Here, .

e [T

. S-;r“(e*’ ?)deaz_’_t_g-l ¥

—%

=3
_ k) ')
T

e~tko(g)em S [——-— +sin-1 x* 4
1

-4 (§, ?/)[ (--- +sin-t z*) — J 1+€ Ay (z*, 5)]d$ k’
A, (x*, By ] «/ :_11? e-ikdy

1+1

+7%"{DI“D;"{SI -+ et o) [ IE o, e>]¢7f?e"‘”‘””%5%de]

2
--=D,

®

-

+%—{D3+Da}{sx[ ( +sin"x") "/1+$ Ar(*, e)]\/TT:E

Df! [-(5 +sa- =)~

e-thty) Fd&‘}

i=F, . F :
T 460 [y [T stk ™ 7 2]

(3.42)
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It is clear from Eq. (3.37) that those terms in Eq. (3.42) to
which 1( +mruq israpplied will be 0. Therefore,

. 2 pt . -
) S Pa (8", u)de*..__;s 1A.(.cw,t)*v.,(&‘. v)de-i’fﬁ%ﬂ’!le-mmzmsl A3 (z*, ) e~ gy

i

_2 . 1 ) - V) . ~
+ O=D{{" A(en, et de}—-;f—{DﬁD.}{S:Ag(x.,e>e~7imcde}

N 2 1 ‘
o *TD‘{S_{"(“”"*)lkﬂv)ra“ﬂ(y)ele‘“""T’—"iai de} -
- (3.43)
However,
(T . I |
. Ay(x*, D e~ s e — s g 1 =z (=1
‘}’“"’“ I R R = W
) 1 T=zF (* ¥ 1
T wm VI S VT wopetera "

’ (3.u4)

Since it is belleved that the first term on the right side
will be 0,

7 —zk(v)S n(e*.y>de*~———ak<ws A(a*, 8)a (8, ) e
zko(v’)rf' @) ttotrzm WS L kg
1

= 52 ) Vi1

A W

~ 5 0-Dyff a0t ) ;

~F oD kot peomea)

+—~D.{S ~ik) e, 5)[ko(ll)xm+k(v)$]¢-m'”_ﬁ%'d€} (2453
o ' [s1c]

If we substitute Egs. (3. 35) and (3.45) into Eq. (3.40), we

obtain: B . L
;/ ﬂﬂﬂﬂﬂ —‘%%%)l)— S_‘[»,/T—g ‘/T“—?c;—f—:k(u)ni(x* e)]va(e.v)de L
: +J!‘£M_(.’Q.e—¢x.(y)fm T_I%_:___ffsl «/ZTZT e~ di
~Z o-oaff [V V1 x.‘ F A oleeorvita)
“‘5“””””*{81 LV Eﬁ s —ik(y)Al(x*.e)]e-mmde}
. +-f—-D.{S [ko(v)xm+k(v)€l[ Bt V= x'lé =ik, e T de) (3., 46)

-~
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3.2. Analysis by Unsteady Theory

In cases then the rotor surface is performing sinusoidal move-
ment as expressed by 6 = 8 sin pt, as was mentioned in Chapter 2,
Section 2, the blades perform movement synthesizing two types of
sinusoidal vibrations in which the frequencies are £ + p and

Q-po

Since Eq. (3.11) for seeking the induction velocity is

linear, we can obtaln one set of equations for each of these two

frequency components.

In blades in which the mid-chord line is a

straight line and the wing chord 1s uniform, if we refer to
Eq. (3.38), the integral equation for seeking the bound vortices
with respect to the two frequency components can be written in

the following manner:

Viy)

= 1 Ba dI's (y)
L@ (y)=Ts(y)— T LD (ks () +iHy® (B (1))] SR dy

XNp(ks () ly—71) o (ks (1)) —ids (k= (7))}

1
+ RO (. () +H® (k= )] S i+ (o) d,,[

X Na(ks (9)ly—n1) {Jo(ks () —iJ1 (k= (n)) }dy

V()

o)

1 SE-. dls(m 1 V) ]

T TR (ks (3) +iHe® (kz 1))] an
X Ng (ks ) ly—21) {Jo (ks (1)) —iJy (ks (9)) }dn

\ 1 Ry
B\ T R ® (ke (1)) +iH® (k= (y))] S z[‘,: o - dq

X No (ks ) ly—11) otks 1))~ i1 (ke (8)) )y

L V)

" V() ]

" V)

N
+ 2D (e @) T (ks )] S LT dv

| XNp(ka (0 ly~11) ks @) [k () -

1
3

€]

1

Here,

Lid(y)=

e )

vor)

il

L V(n)

1+iks (9)
LERD o) Jan

(3.47)

#iks () [EL® (k= (1)) +iHo® (ha (7)1

(3.48)

Eq. (3.47) can be solved if it is rewritten in the form of
a system of simultaneous equations, and the bound vortices along

the radial direction of the blade can be sought.

Since the method

of solution is slightly different from the method of Ashley et al.,

it 18 described below.
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Method of Solving the Circulation Eguation

Np, Ng, and N, have singularity at y = n. This is described
in Appendix B, but let us:repeat it here.

lim Na(@)= —,i’T

i q
} IMNB(‘I)"‘“'“T"' Il

2 ;
' lim Nc(r)_-l—rlhn tog ¢+ (r+1og’ 2+-—;—-c)
.o 0 . L

Next, let us introduce AN, ANg, and ANg.

\ Na(gy=4Ni(qg) +-‘g"‘ - (3. 49 )

| Nalg)=4N, +——— -4 '
8(q) 8(q) i il (3.50)

| No(e)=4No(e)+—-log el + - (r+1052+——-t)l

| P
(3.51)

Changes of variables are performed as in the following equa-
tions:

C RetR_ R—Ry ' _ RetRy R—Ry .
L B oL r=—g g !

(3.52)

When the variables are changed, Nj, NB, and NC will be as
follows.

et A o e e s szbimo

NA(km)ty—m Ny Gka D) + e (3.53)

- cos f—~cos ¢
NB(kt('))[7/‘7])-ANB(kt(’l)[?]“"VD+ kt(ﬂ)tg,_m[ma_mm * Jeos f—cos g

~cos ¢ 5
%  NoGks )y =ANg (ks (1) 0—11) + g g foos 0—cos ¢ :

; v (m(k,m e A )
o

—_— DS (3, 55)
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Since T &+ (y) is 0 when y = Ry and y = Ry, we apply Multhop's
interpolation formula [3]. Please note that the abbreviation F(¢)
is used instead of R2 + R1 - R2 Ry in the following.

F( 5 )x cos ¢

‘ r,(¢)=-ﬁ§—i-ngll"*(qﬁs)n);lsinnmsinn,s . (3.56)
Here,

o1 = g3

If the interpolation formula is used, Eq. (3.47) will be
written as follows. :
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To organize it further,

P (g)= N-Zi— i ‘Izr:l . (40 :Zi;l sin ng; sin ng

1 2 R: y
+ wiUEL® (ks (9)) +iHa® (ke (9))]  N*1 Z I's($) Z sin 7y

1

X S:sin nf sin H[KM ($,0) +Ka3(8,0) :TC}?_;:_S‘C;%%‘_

;  +Ka($,0) T%—wlog lcos §—cos ¢|+ K ’——6‘1"0'5;‘;]‘” ;
{ 1 2 ;{

T HIES G @) TP G 0T NAT Ll 2 ik
: X cos 18] K 1s(8,0) + K (9,) —,fﬁ%—‘}';%%,—

/

—m g/
oos0 eos;ﬁ]da

B

[ -
J{- K,;i,(é,f)» T%:sii:-—_m log {cos 0~ cos ]+ K 49

(3.58)

Here,
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If the so-called Chebyshev interpolation formula [3,19] is /51
used, Kp1(4,0), Kap(9,0),...Kp8(4,6) can each be written in the
following manner.

1 _ 2 un 1,2 |
~,KAW:’)-—-7_*_—1-12311(4(?5.01)(—2—+‘};lmslﬂfcoslﬂ)

- 2 .IHK f; ‘
- 7:}.-sz-:1 ‘(¢' o) <o (Cig cos 19)

(3.59)

Here,
- Cog=1/2

i'_Cz;=coslﬂj (=1, 2,..-J) }
" (3.60)

Cansequently, Eq. (3,58) can be written in the following manner:

. : 1
i [Hy P (ke (9)) +iHy® (k+ ()]

Z Ku(g,07) z: C;,S cos I8 [cus(n—1)0—cos(n+1)6} 0

Ali Py (gy= 2"}1 L.(¢0) -—N%_—l— ng: sin n¢¢<sin np+
I 2 Ri—Ry 7,
XTI T {

Ry— R1 cos 0—-cos¢ 40

Z K, 0;) Z} CUS cos {0{cos (n—1)0—cos(n+1)8} cos —cos 9|
cosﬂ —cos ¢
Jcos @—~cos ¢}
.
cos f—cosg

4

R’—-Rg

+ immwmadmmemhmmmﬂ loglcos §—cos #1d8

+ R,-—R1

z (8,0 2 c,,S 008 18{cos (n—1) B cos (n+ 1) 8] &
[

* cos 0-—cos ¢ do
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F Kan$,0) ¥ C
”1-1 48(9,09) ‘);:1 7}

I cos §—cos @) )
_ da I * cos —cos ¢ . . e
nlzs‘KAr(sﬁ, D) zgo Cy So cos {0 cos nf Toos T—cos 4T log |cos}#—cos'd| do L

25 Kl a)ﬁcg 10 cosnd——L—_dp
A (8,69 & Ciy cos 10 cosn oosﬂ-cos¢_d]>

®
0 .

(3.61)

Let us solve the four types of integrations which appear on
the right side of the above equation.

S
s s e

e T r for  p=g=0 e B

@ FWp.=S:oosNoosq0cIO= /2 for =q%0
’ . 0 for p&xq H
' w24 for p=q=0 '
: , " x--2¢ _ sin(p+q)¢ : e
) _ sinlp—gld  sin(p+q)é for P g
. o | p+q - F
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—fo(®) for p=g¢=0
— f0(¢) +fp‘d(¢) for P=q=¥0
2

008 =080 110 o) dom

0 FYpa(@)=|, e pheosad oy

_ L@@ g g

Here,

-

*_tosf—cosé (log |cos 8 —cos ¢|)cos k0 dF

o lcos 0— wSN

f=|

Reissner [21] has sought fx(¢) for cases when k ¥ 0. Ichikawa [3]
transformed Reissner's equation ard made it into zn easy-~-to-handle
equation. Ichlikawa's equation is as follows.

~
1

&=

Seh=F { [21og sin 1 +log 21 sin kg (4 )cos L¢} +0(8)

Here, gx(¢) 1s sought by means of the initial conditions

‘1) =0
:' 0s{d)=— su;2¢

and - the recurrence formula

_G—Douie) - 2koos¢yk(¢)+(k+l)0kn(¢) ~z[ s"“:“il)” 5’“?:1’)"] =28 )

It 1s clear that the»following will apply, in particular'in
cases when k = 0.

et At

- [ (ﬁ——2¢) log 2+4S log sin zdx fot %—29‘5 i
)= .
"\ .o ((#—295) 1032-‘—45 log sin xdr for <d
oo de-s 2 -
Here, o
| . ‘,’ N . . p— ‘ - ¢‘ " # ¢7 - B
T s
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0

‘ 1 w | __& sin(p+a)d
FZpq($) = cospﬁcosqﬂ———:—-——dﬂ = 2 pt+q
- Pq S cos $—cos & . sinlp—qlé 7 sin(pra)d
N7 Tl 2 (to

If we write Eq. (3.61 using FW, FX, FY, and FZ, we obtain:

k[' O (f) = 2”; r (¢)-—g—_ f; sin ng < in ng4- !
(eTR= 4 BP0 TR SRS aitﬂn"’(kz(qﬁ))+iHo‘”(k~(¢)>l

X (B K .00 B, CulFWins—FWiinn) = & Kis$,0) E, CuF Wi

__R,—Rl

Z' Kaa(9,05) E Ciy(FXy,n1—FXyn41) +n Z Kan(4,0) Z CiFXyn

R,——R;

Z Kas(4,97) Z Coy(FY 1, n4—FYyn40) +20 E Kaz($,95) Zl CiyyFYi,a
R, —R
BB R a0 £, CulF s F i) 40 F Kan($ 09 CsF i) ) (3.62)

If we select N values of ¢, Eq. (3.62) can be solved as a
system of simultaneous equations, and T ¢ (¢41) can be sought.

Lift Distribution Along Radial Direction of the Blade
If we refer to Eq. (3.46), we can write as follows the equa-

tion for seeking the pressure difference between the upper and
lower blade surfaces with respect to the two frequency components.

/%31)"2"78 -x[\/ T x*l_e —iks () M (2, e)](mz-zdﬁp)de

i
1

¢
\

iks NP2 (y) [ T=7% (= 1 i
+ x N/ 1+x*§ VIS ¢ rewidl

- -,-L:- {bz*Ds} {S [‘\/m 1+x“‘ xi_.e

- _;2"_ {Ds+Dy} {S [ v }:i:— .t‘j:—e —ika (?I)Al(at;’, 5)]3—‘&*(176,{@

2 v
+-—{D.}{S k*(v)é{ T.; 1:‘* »x*l i —ik=(v)A,(x*,e)]e-m(mdg (3.63)

—iks (¥) i (x¥, E)]e—tu e g

If we integrate Ap + (x*,y) from the front edge to the rear /53
edge, we can obtain the 1ift per unit wing span. The following
integrations are used at this time. :
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1 1—x*
AR I"—-e

Ay(x* O drr=avI-8

1

S ——drt=—r
S;

t =2 ;e
S S AT Tyar =T

R e B oy
+fkt<u>t'z(y>§ e idd |
veo-paff [JHEE ik ) VIE Jemksot i)
' +2{D=+D°}{S [Jg +xkt<y)«/"?]e-'k==w>fde}

—Z{D‘}{S k:(v)e[ ghkg(v)«/”‘?]e—umnde}

(3.64)

The integration can also be indicated in the following manner
using Bessel functions.

= et idi= -ﬁ.- Hy® (k= (v))

S i
‘\/ 1+ e"‘"t('l)¢d$=—1f¢[~71(kt(ﬂ))+l-’o(kt(’)))]
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1
1

S‘ ik (y) VI—E ekt dE=inJy (k= (1))

| ey e-mmnde—m[k,(umm(m~ o Jl(kt(’7))“1"’21:(1/)'}1@&(’)))] )

/

W ks (1) V(1) /
S Bad(y) eV I Be-tkatnidy = ——ﬁa%ﬁfx(ka - -*-f-i;r)’—"" (Ie ()
S IHE geer

S «/i’"?fd€= o -

Returning the operating symbols to their previous state , the
1ift per unit wing Span ¢an be expressed as follows:
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E*(v)-'—b’s 4p(z*, ) dx*
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AL R A vm ' ’

. s ]Nc(k=<u) =11 otk (1))

s v .
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(3.65)
Taking into consideration the singularity contalned in Ny, Np, and
Ng, if we use Multhop's interpolation formula [3] to express T#,
we can write T

+ (¢) in the following manner by exactly the same
procedure as that used to derive Eq. (3 58) :

Zt(v)—pb’V(¢)<2 (1+ ik (9)

)(~2008)+ 3 80 g £ sin nssinng 2@ pw e, @)
+—-—2-T R’ Z T+ (80 Z sin n¢¢S sinnﬂsigO[KAo(ég ) +Karo(9,0) ,ﬁ: xg,
+Ka1(8,8) ﬁ%ﬁ:—;— loglcos O—cos ¢| + K a12(4,0) m ]do
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cos §—cos ¢ 1
} +K05(8,8) ms i loglcos 8—cos ¢] +Kars (9, 6) m]da>
Here, '

(3.66)
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Kan($,0) =i ;f] =N RAON ALY ..1_,1:,@)).1.(1:*(:)))“—@ikv)(%—1)"Ju<k*<»z>‘>]’

V() Vi
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If we use the so-called Chebyshev interpolation formula [3,
19] to express Kpgq(¢,0), and if we use FW to express the integration,
we obtailn:

Lt(¢)-'pb’V(¢)[2-,<1+ zkt(:ﬁ))( _;_ b’yép)% N /55

* 2

: ‘ J41 J |
x{—&:& }3 Ka9(8,0)) %Cu(FWt 1= FWipe1) —n Z+I Kun($,09) I CUFWt.n‘?i

_ Ra—Ry Y
4
R,—R;

E Kaso($, ;) Z Cy(FXpnaa—FXine) +n Z' Kau($,9y) Z CiyFXpn
ZI K (8,05 Z Ci(FYy st FYiner) +n Z.' Kas($,0) E CiiFYi,u

R’_Rl Z Ka12(4,8;) 2 Cu(FZz n-itFZy, ml) +n Z K.41o(¢. ;) éﬂCuFZx,»ﬂ :
‘ ~ (3.67)

The amplitude of the unsteady components of the 1ift operating on
the portion with a width dy' at a point y' from the rotor hub is:

Ry~ Rl 51;1 ¢a’¢

Ltdyl""z* (95)”

Since the unsteady components of the 1i1ft operating on the g-th
blade have a phase advanced 2nq/Q from the standard blade,

"Leody'=L o dyeitersa:
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On account of the unsteady components of the 1ift operating on
the Q blades, the moment occurring around the Y axils will be:

Q-1 Ry’
My=—3 S ! v2L, udy cos(!)l+
Ry

=0

zg )mmw Qz;‘s 1L _qydy cos(az+ __.Q__) -t

q =0J Ry’

In a rotor performing pitching so that the rotor surface may
be expressed as 6 = 8 sin pt, the piltch damping can be calculated
by the method in Appendix A if the time changes in the moment
around the pitching axis are known.

B e

(3.68)

If we carry out the calculations, we find

-@a%l—-.: ';;%" {SR Emydv+s En—ydv}

1

Naturally, the T(¢4) obtained by solving Eq. (3.62) is an
approximate value. When this T(¢4) 1s used to calculate T(¢),
it does not necessarily follow that T{¢) will be 0 at the wing
tip, that is, when ¢ = 0 and ¢ = w., 'However, assuming that the
1ift will be 0 at the wing tip, let us use Multhop's interpolation
formula [3,19] to express fR + (¢)y

RitR,  RRy Rk
L}u(?‘)( R 2 5 L cos ¢) N+1 ff Znt(ém)( R’+Rl R’ le .cos ¢m)nglsin néq sin nd

- SR:LRtﬂdV-» 2 R!"'Rl % Lea(dn )(R'H-R; _ R&;R!

N+1 2

cos ¢m)siﬂ P -E-
The circulation distribution in the radial direction of the /56
blade, as well as the 1ift distribution, at a rotor revolution

speed of 300 rpm and a pitching frequency of 0.756 ¢/s are shown
in FigSm 60 and 615

In Figs. 32 to 43 are given comparisons of the values esti-
mated from the experimental values for cases when elastic defor-
mation of the blades would not occur, as against the pitch damping
values calculated using the theory of Ashley et al. [19].

The calculated values are much larger than the measured values,
but are smaller than the values based on Townsent's theory [7]
and Theodorsen's theory [18]. That is, since the wing span is
Finite, thére 18 a, sudden deoreasgse of the air forces in the vicinity
of the wing tip, and the pitch damping 1is smaller than in the two-
dimensional theory.
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Fig. 60. Lift distribution along

wing span sought by Ashley's
unsteady theory. b' = 0.024 m,
Rp = 0.800m, p = 0.756 c¢/s,
2-= 300 rpm. T*%(2)is from the
two-dimensional quasi-steady
theory.

Fig. 61. Lift distribution along
wing span, as sought by means of
Ashley's unsteady theory.

b' = 0.024 m, Rp' = 0.800 m,

p = 9.756 c/s, Q@ = 300 rpm.

L#(2) ig based on two-dimen-
sional quasi-steady theory.

o

. tralling vortex.

There is almost no change
in the calculated values even
when there are changes of the
revolution speeds of the rotor,
and the calculated values dis-
play a tendency simlilar to the
measured values.

The relationship between /57
the accuracy of the solution
and the number of terms N in
Eq. (3.56) is shown in Fig. 62.
The similar relationshlip with
respect to the number of terms
J in Eq. (3.59) is shown in
Fig. 63. An adequate accuracy
was obtained at values of N = 9
and J = 5.

3.3. Introduction and Applica-
tion of Theory of Ashley, et al.
19] for Cases when the Blade
has Steady Motilon

In a prologue to their
monograph, Ashley et al. des-
cribed a method of calculating
the ailr forces operating on a
blade in cases when the blade
is in steady motion, taking
into consideration the fact
that the wing span 1is finite.
This is introduced here.

Since the bound vortex
does not undergo changes in
time, there is no shed vortex
in the wakej all that is
present 1s merely a steady
, Thus, equa-
tion (3.3) can be written
as follows.

wwn=-4{,,

ra (¥, 7) (£~ +3. (¢, l’,)__[_!""l"]” ‘ o gt T
ez L U

Sw (. 7) v~

e : 1
R 9 =
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x¢ ? .,
tw @)= | ret IR = - L

7=Ry, ¥=Ry Tva, I'd BOIiz3Z LEBRLOOEELTR S LW
1 SR‘ S" a ¥\ 1) VT -E)YIi(y— 77')2 de'dy — 1 SR’ dry do

S Lo 3 ) Wiy = F T ey By T M
I (3.70)
L e In rotor blades of helicopters, the
) \ wing span is quite large in compari-
% son with the wing chord. Therefore,
R in most of the range of the wing
100 o © 0900 o surface, the length |y' - n'| is large
, f enough in comparison with the length
: j |x* - £'|. Although this does not
- O ' ' / apply in cases when £' = x' and
951 ' X n'! = y' at point (£',n'),

/(xt - E7)2 + (y7 - n')d/(x'-a')(y'—n')
is the odd function of (x!' - £') and
(y!' = n') in the rectangular region
' : ; centering around point (x',y').
901 : Thus, the influence exerted by the
' rectangular reglon on the induction
velocity vg(x',y') is small as long
< ‘ @ as 9ya/3n' is not a function which
* changes rapidly. From the above con-
. slderations, it is supposed that
5 ' ' V(X'-E')d + (yT=n")e/(x'-E"'")(y'-n")
| 5 10 N is |y* Zn i{(y En')(X'gg )th This .
‘» w  approximation is exactly the approxi-
iigéaggé wggﬁvgiigggeogf Mo mation made by Prandtl [24] for wings
terms N in the interpola- advancing straight forward. The
above equatlon can be integrated by

tion formula (356) was
increased ggiggothe approximation described

0

)

w@fﬂ*é&miﬁflw
1 ¢By dry _dy ; .
e T Tdm Sml d; v’-—?)’ (3.71)

;.V"-W'/bo'm

=/by
z={z'—(x/+2) 12}/
=&~ (' +x')/2}72)1Y
ir=rd1by ‘
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Mo ' Assuming the above, let us make

Mue changes of variables.
1.001 |- ) A
© N Sas(e, ) == - | T2ED e
%
\ 4 Jry dn y—n :
999 ~ \ (3.72)
" Multiplying both sides by
008 ) X ¢(I¢x;7%I~xS, let us integrate x .
1 o \( from -1 to 1.
. 997} v
9% : ! Sq”“'(x’”)*/ -5 % ~
!"\, 1 1 R’_‘!Q. dy
i —_.-—-2-1'(1/)——4-83‘ dy  y—7
<r ! (3.73)
S "; ——— : When vyy 1s determined from the

; boundary conditions, the above equa-
Fig. 63. Convergence of Mg tion will become an equation using

in cases when number of I' as the unknown function, and it

terms J in the interpola- will be possible to solve it numeri-
. tion formula (359) was cally. The 1ift operating on the

increased wing surface can be calculated by

the following equation.

g L(y').y=pbo’V(y)ﬂf‘(y) b n
| (3.74)

Applying Egs. (3.73) and (3.74), we handle pitch damping
problems from the quasi-steady standpoint. If we compare the
results with the results obtained in Section 2 by using unsteady
theory, extremely interesting results can be obtained in tHe sense

- that the unsteady effect can be evaluated in pitch damping problems.

When Eq. (3.73) was derived, it was assumed that V,g Would be
steady in time. However, in pitch damping problems, thé blades
have velocity components which are vertical to the rotating sur-
face and which fluctuate in time. However, 1f we assume that the
veloclties vertical to the rotating surface at each instant are
unchanging and 1f we equate them with vgag(x,y), the following
relationship will be valid at time t for the standard blade.
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Vas(L, V) = -—ybo’l?p cos pt cos 2t

. —yb'Bpcos pt cos 2t
1gfs dll dy
='E””*TL;% e

In the same way as in Section 2, I'(y) is expressed by means of
Multhop's interpolation formula [3], and the second term on the
right side is calculated using Glauert's integration [23].

In the case of the gq-th blade,

Vas(Xs¥) = -ybg'8/cospt cos(at + (2rqa/Q))

The 1ift distribution is solved by utilizing Eq. (3.74). If
the Tift per unit wing span of the q-th blade is Lg(y'), then the

~N

moment generated around the pitching axis will be:

g1t
0

Me= 3 o Loty o e+ L )y

The pitch damping 1s calculated

1 1 el

% ) 4 6 ’33“ 1098
Fig. 64, Circulation distri-

bution along wing span sought
by means of Ashley's quasl-~
steady theory, b' = 0,024 m,
Ro = 0.800 m, p,=_0.756 c/s,
Q = 300 rpm. [(2) 18 based
on two-dimensional quasi-
steady theory.

by the method in Appendix A.

In Figs. 64 and 65 are shown
the clrculation distribution in the
radial direction on the blade and
the 1ift distribution in cases when
the rotor reveclutlon speed was
300 rpm and the pitching frequency
was 0.756 c/s.

In Pipgs. 32 to U3, comparisons

' are made of the values estimated
 from the experimental values for
-cases when elastic deformation of

the blades would not occur, as

‘against the calculated values for

this case (using Ashley's steady
theory). 1In all the figures, the
results obtalned were almost exactly
the same as the results of calcula~
tions using the unsteady theory of
Ashley et al. This may be reduced
to the fact that the non-dimensional
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;R2, = 0.800 m, p = 0756 C/Sg

frequency is small. The unsteady
effect seen ih three-dimensional
theory is smaller than the unsteady
effect seen 1n two-dimensional theory
. (the difference between Townsent's
. theory and Theodorsen's theory).

CHAPTER 4. ANALYSIS OF PITCH DAMP~
ING TAKING INTO CONSIDERATION FLUC-
TUATIONS IN DISTANCE BETWEEN VORTEX
AND BLADE

0 2 4 6 8 1o4p

Fig. 65. Circulation distri- 4.1. Concerning the Propertiesrwhich

bution along wing Span sought an Aerodynamlc Calculating Method
by means of Ashley's quasi« - Ought to Have in Order to Analyze
steady theory, b' = 0.024 my ~ Pitch Damping

300 rpm. L(2) is based Two unsteady theories were
on two-dimensional quasi- applied for the purpose of analyzing
steady theory. the pitch damping of rigid rotors,

but satisfactory results could not

be obtained. However, the following
was learned as a result of a comparison of the analyses performed
thus far and the values of the pitch damping for rotors having
perfectly rigid blades, as estimated from the experiments.

(1) In Loewy's theory [147, only the effect of the shed /59
vortex in the wake was consldered. As a result, 1t was learned,
there 1s a considerable reduction in the piteh damping in certain

cases.

(2) Therefore, if we were to include also the effect of the
trailing vortex in the wake, 1t would be expected that the pitch
damping would be reduced considerably.

(3) If we consider the fact that the wing span is finite, the
1ift in the vicinity of the wing tip is reduced considerably in
comparison with two~dimensional theory, and the pitch damping also
is reduced.

(4) The unsteady effect contributes very little in problems
of pitch damping.

In 'view of the preceding, a theory for analyzing the pitch
damping will have to be provided with the following properties.

(1) It must take into consideration the effect of the reduc-

tion of the alr forces on account of the induction velocity
caused by the vortex ln the wake. .
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(2) It must take into consideration the fact that there is
a sudden reductionof the air forces in the vicinity of the wing
tip.

However, the theory does not necessarily have to be an unsteady
theory.

If" the moment of the air forces operating on the rotor blade
root 1in a state of hovering were to be calculated by such a theory,
it would be possible to obtain quite good results. Furthermore,
the experimentally obtained air force moments operating on the
rotor blade root in a state of hovering [25,26,27] are 50 - 60%
of the values calculated by means of two-dimensional strip theory.
Therefore, if one were to perform the calculations by the model
mentioned above, similar values ought to be obtained. Consequently,
the pitch damping also ought to be approximately 60% of the
Townsent analysis [7] using two-dimensional strip theory. Never-

* theless, the pitch damping of an entirely rigid rotor blade estimated
from the experimental values is much smaller than this. Therefore,
it is necessary to introduce elements which have not been taken

into consideration thus far.

During rotor pitching, the position of the blade is constantly
being displaced in the Z7 direction. As a result, the relative
position between the vortex in the wake and the blade is not con-
stant. When there are fluctuations in the relative position, the
vortex in the wake causes fluctuations in the induction velocity
which is induced on the blade, and there will also be changes
in the pitch damping values. Consequently, it is desirable to
include fluctuations of the relative position of the vortex in the
wake and the blade when one is calculating the air forces.

Thus, taking into consideration the fact that the wing span
is finite, let us derive a steady wing theory concerning rotors by
which the vortex can be located at any desired position in the wake.
Since this theory will be applied in performing quasi-steady analy-
sis of the pitch damping, it is required that the wing theory
itself should be as simple as possible.

4,2, Steady Theory Concerning Rotors

A Steady wing theory 1is valid also for rotors during steady ver-
tical flight. Taking our departure from the equation of Ichikawa
"in his linear theory of rotor blades [1], let us derive a simple
1ift 1line equatlon sultable for analyzing the pitch damping.

At this time, we assume that there 1s a small inflow on the rotor
rotating surface and that vortlces located at a distance away from
the standard blade which 1is being considered have little effect.
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In the following let us show the relationship between the
x'y'z' coordinates used thus far in this monograph and the tro
coordinates used in Ichikawa's monograph.

Z=rsin t;"

o c-;a

=—h 7—2-3
(4.1)

The relationshlp between the xyz coordinates used in Ichi-
kawa'samonograph and the x'y'z' coordinates used in this mono-
graph 1s shown in Flg. 66. The following shows the relationships
with the unit vectors in the coordinate axial direction.

U dy==sin gi* +cos gf*
Jr==cos gi*—sin gj* }
kt=—k *
(4.2)

If we use iy, J1, and ky to represent the vectors r, and r, in .
the tangential direction of the coordinate curves o} the tro .
coordinates,

S N T D TR
v; "”f‘gﬁ"‘m"“”“;““"“%“in%iﬁ-—gk* 1;
wﬁsiﬁ-f—;f-iuws t+0 . 7

e . : - [sic]
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In Ichikawa's monograph, the sur- /69
face vorticlity vector y of the
vortex sheet 1s written in the
following manner.

. 1., S N .
=y e (4.5)

Here,

‘ H(ﬁ):%vm,

Ir ¥ 18 expressed by means of 1%,
J%®, and k%,

Figl 66. Coordinate system

Key: 1. Blade 1 '?+f

2. Blade 0 7‘7},ﬁ?[rﬁﬁ -—3—,21~r’cos y;y ]f"‘
3. Blade 2 A e 1
+ Vha+;r;[rws 5+ sin ]j*
\ s, | 4.
e o

When the inflow is small, we can regard h/vh2¥r'2 as being small,
and the following can be written concerning ¥, which expresses
the wing surface:

Y = ~gNi% 4 YNJ*

APV S 2T ~
(Y =y VR sin—g—1

Y vy

\ ot VidFa g

i 2 t'4o
N .

\%7 Yy * o~ e

A}
\

-8

r . o ;
I T e

(4.8)
If this 1s solved with respect to ¥ and §,

f--* leﬁm "';" —8¥ sin e"-;a')
.8= "/152 +7 {r"sn 2" +3¥ ¢cos y.;y)

t

—_ E 21

(4.9)
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Concerning y, which expresses the vortex surface in the wake,

;=0
dri (u’olO)

B
S (4.11)

The equation for the 1ift surface may be written as follows,
according to Ichikawa.

34

1 ot { ’ e, A -
-w,.(Pa) axH(Py) qz-:o Sr Sm,G(Po' Pi)rsededr’ \\\\

+§7 0 DeP Psatear + 1§ DCPu PO %’rl;d,'d)}\,
(4.12)

The contribution of the vortices at a distance away from the stan-
dard blade is omitted as being small. The t' coordinates expres-
sing a point on the locus generated from the g~th blade, which

has passed under the standard blade, and which has further moved
around ghe Z axis n times, can be expressed as follows, using a
small t¥,

v o
7 =ty

(4.13)

At this time, the equation for the 1ift surface is rewritten as
follows. )

29

mm-mmT&LWAMmMW
SnS'“D(P,, ¥)Sodetdr’ + 5 zs S

10 Gl n=0

téeig

D(Po, B)dwode*dr’ . _ _
‘_”?» T o ’ (l‘ . lu )

The distance between point P and point P' is expressed by means of
R(P,P'). If we write R(P,P'), G(P,P'), and D(P,P') concretely,
they will be as follows when point P is on the lccus surface of
the standard blade:

) o4 r2r msi:zi]m

4rq

R(P, P’) { (t-—t"-dkn—-

G, Py=—gein 2 et (—}{) ";" a( )

oo ) L)
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If we continue to make further calculations concerning G and D,

ht 4nq )__72_"_ . f—tt }
_5;—(—1(—-)= F[—T(r—t*-—aixn-— 0 3 sm——-———-—z\ ’

—t* h? g\ 1
G, Py =5-sin B (e-r—tn-T5 )&
2 q t—t* 713
D(P,P')-{— v (r—t’-—llim—- 0 )sm 5 “i |
- Y oy t—t* ) 1
h’f’ ¥ +.L‘_.’-.--|-————4 }—wﬁ-‘—

If we use t*, Eq. (4.9) will be:

Fi_"‘. ; * %
r= .ll.-—éir::{r” Ccos —tz— —&N sin -%—}

B *
3=___;T__‘/ +1 {r”sm—g-a}-&”ws—zz——] ]

. GUPu Prark D(Po, i) b= —@;@-{’: * k f—{—sin—g—)r"
_1/_?{ (r— t*)cos—{-bz:——!‘—-(t-f")sm ;‘ sin—g— _
;“ + ’;: it e t‘ Tcos f* sin—ﬂ-}m N
LY W{ -.._L:'.,_ .fg_}s»w VR {——’-"-(f-c*)sin-f:-31f
I T P

(4.15)

When the inflow is small, h/r and h/r' will be smaller than 1.

At this time,

G(Po. )rBo+D(Po.Po)"ao-—?;-{Tsin—“—-bTmﬁ }r + R,{r*oos-ﬁ--—-—rf—cos ; }8”

A T e e arg
:X_;.D(P,,P,)Om==—R-{" r i } dar .
vt 8y t—t* | dI'y
+°z! I—’mPn’) { A B } ar
“ Q-i 1 rr” r t—t* ) dly
+n§ua0-ﬁ(}’ 0 P !') ( * 4 ‘”’”2 dr

(4.16)

(4.17)
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Therefore, Eq. (4.14) will be:

)

o= ([ (rin g - i Jrvacar
e s
e S )
D R - -
+é§VﬁmVTM§”—4Vﬁ*W] '
' ‘ (4.18)
If the variables are changed to x', y', and z',‘we obtain:
i G R a1 L G
BTt ZzsiS"‘ - ”,;1” G e

If we regard the contribution of the distant vortices in the wake
as being small,

Aw"‘= = [SR'IS”‘; [f—e']rw+[y'—v'i5” dedy +S IS” v dl‘c dnd 'M'

Tz Llayds R’ 't "*R_s'_ : /62

q=1JRy Ra dy . m=0g=0 R R3

(4.20)

The first term will be exactly the same as Eq. (3.69) in Chapter 3,
Section 3, and the second term and the succeeding terms can be
integrated with respect to £'. '

. -1 r rN . “" Ry dr . d'/ et drq y’-’)’ -
Vas= 4 L Szu 33'—8' dé S dﬂ ?' - 2 SR; dy W=7+ 7 =58 dy
a’ day  v— #P+u oy 4

n-ﬁq-o

(4.21)

Concerning the third and fourth terms, the vortex surface in the
wake 1s replaced by discrete vortex filaments.
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_ =L [ ez ¥ Ry dI" gy ’ Q-1 g & __' , /
P— 2 - a8 a1l —1qs) :
i IS:[‘ ¢ +Sn.' dy y-¢ +c§l /§t W=7l +[Z~Cyl®

LR St Aosly'—'n.q.4) .

+ n§o q -0212-;1 [ﬂ'—ﬂ'n.q.j] 42— q.5] ]

Here, if we posit that

 Bgg=Ig g1 s
. '8 Ay 4= A -
ey , = )
’ = _.__x‘ L I T¢ _xl’ p vy~
§= 3 + ———-—-.» 3 & ”IE 1019 )

we obtain:

__lpog Nety) _ 1 ¢ dl dy _._ﬁl_‘_:'?*lh;’ i ‘dqf[u;ﬂul
Vas (L, V) o S_ —-——-x_e a4 TSR,—d'T; e R R o W PR RN e ST
1 Q 1 Aasty—1n4) ) '
21r n-lq-o.]zl [Vj")qj]'“f'{z“cqll‘ i B (4.22)

If we multiply both-sides by vI ¥ %/T = X and perform integration
for x from -1 to 1, we obtain:

S s e I BadP  dy _ 10: dos (v —n0s)
S-—z‘/ 1=z v Vdz=—5 W)~ 5 S Tdr Y= 24215 gt e —Lggl?
1 5eatd  duly—) o
2 A=rgcofer [y—ngl*+ [2—Lyl? ’ (4.23)

4.3. Analysis of Pitch Damping .

Fundamentally, the pltch damping of a rotor ought to be ana-
lyzed by assuming unsteady alr forces. However, it was learned
as a result of the research in Chapter 3 that it is permissible to
analyze it in terms of quasi-steady air forces. Taking into con- i«
sideration the fluctuations of the relative positlons between the
vortex and the blade, as was described in Section 1, let us make an
analysis of the pitch damping by applying the theory in the previous
sectionwwith respect to a rigid rotor whieh has pitching motion in
which the inclination of the rotor surface may be expressed as
0 = 8 sin pt. :

Eq. (4.23) 1s written as follows with reference to the
g-th blade.
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Y-x‘\/E va(x,y)dz »

lsm dar dy
A)p, Ay y—n

£ 41 Ayly-ny)
- 1231 :§1 2 (v—my)*+(z—Gy)?

1

(b.24)

When applying the above equation to pitch damping problems,
it 1s necessary to determine Aj14, niq, 115 and vy, As for vy,
if we refer to Eq. (1.5) and taﬁe into ¢o siderat?on the boundary
conditions of the tangential flow, we obtain:

) 'vaa=;—1l'ﬂac"y"0‘¢°3{-”.q | ' ( . 85)
- If we introduce the effective angle of incidence 6y,
Or=00+8/2-cos g (4.26)

nys4(t) and ¢y (t) express the position of the j-th vortex
filament from the lnside, making up the 1-th vortex layer immediately
underneath the g-th blade. However, in cases when J = J, they
represent the tip vortex of the 1-th wing. For n3j(t) and gy3(t),
one ought to use the values measured from moment to moment while
the rotor is in a state of pitehing. However, we here used the
results of the smoke experiments in Chapter 1, Section U4 and deter-
mined their values approximately. The following method was used
in this., The Jj-th vortex filament from the inside of the 1l-th
layer, expressed by 1jJ, was generated from the g¥-th blade at a
time t' = t - 211/Q0. At the point in time when the vortex was
generated, the Z4 coordinates of the q¥*-th blade are z'q¥*(t'). /63
The generated vortex 1is swept from this position into the wake.
The manner in which 1t is swept into the wake will naturally differ
depending upon whether the rotor is simply in a state of hovering
or whether it is 1n a state of pitching movement. However, we may
view both as being approximately the same. The vortex position
when pitehing 1s not beilng performed, £138Ts has already been
sought by smoke experiments in Chapter 1, Section 4. 'Therefore, it
is already known to what degree the vortex will travel during the
time 2w1/QQ. Thus, the position of the vortex at time t is
z'vg%(t') + £'1497+ On the other hand, the Zj coordinates of the
blade at time t are z'g(t). Since the pltching angle isuminute,

C'U(‘) =2'g(t') +ussr

4.27)
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Here, z'q*(t') and z'q(t) can be written as follows.

Zvg(£) =—yy' cos ggs(¢) sin O(¥') -
(4.29)

Needless to say, Pq(t) = yqu(t').

In Fig. 67 are plotted the
Zy coordinates zg'(t) of the
, . - wing tip with respect to the
b R standard blade, and the Z; coor-
' - dinates Zy1'(t') + ¢! 1€ST of the
vortex generated from the first
blade which 1s immediately below
the standard blade.

0 ; YA sSec
0 .4 >
(ALt For n'y3(t), we use without
N o 20Y modificagionb n1jsts the
T1HAORRB < yortex position when there 1s

no pitching.

Next let us consider A'j3(t),
the intensity of the vortex fila-
ment representing the wing tip
vortex in the wake and the vortex
layers on the inside. (t)
is the intensity of the j %

Fig. 67. Temporal variations
of the positlion of the blade
wing tip and of the positlon
of the tip vortex of the first

blade (not including bending vortex filament from the inside
deformation of blades) : which makes up the 1l-th layer
Ry/b=33.33, §=0.0651rad, p=0. 756"/5' ”‘309”“"“ immediately underneath t(:he q-th
. blade. Therefore, A'j4(t)
Key: %- g%gdsoﬁ%gx of First ought to be determinedjby the
blade bound vortex at time t' of the
g-th blade. However, if the
pitehing period is long enough
in comparison with the revolu-
tion period of the rotor, it ought to be possible to determine
A'lj(t) by the bound vortex at time t of the gq-th blade.

Ay OB O =Ty (4.30)

The contents of this approximation are descrlbed below. That is,
instead of determining the vortex in the wake by means of the bound
vortex of the rotor blades operating under conditions of a pitch

angle ﬁﬂﬂfﬂﬁlhgiu”ﬁ%ﬂ and a vortex position g 1Jq*(t ),
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the vortex in the wake 1s determined by means of the bound vortex
of the rotor blades operating under conditions of a pitch angle

6x(t) = o¢ + e( ) cos ¥q(t) and a vortex position r'jja(t).

Consequently, errors will occur only concerning the intensity of
the vortex in the wake, but their magnitude will be small. This
i1s so because of the following reasons. Since, yg#(t') and yq(t)
are the same, all of the errors occur because e(t') has been"
regarded as 6(t), and 6(t') has been regarded as 06(t). The dif-
ference between t' and t 1is 271/QR. It 1s short enough in compari-
son with the pitching perlod if the rotor revolution speed is
great. Consequently, the error arising from the use of 6(t)
instead of 6(t') is small. The error arising from the use of
8(t') instead of 6(t') is p times the error arising from the use
of 8(t) instead of 6(t'). However, the error concerning the pitch
angle itself 1s found by dlviding this by Q. Therefore, the error
wlll be small enough as long as the rotor revolution period is
short enough in comparison with the pitching period.

As a result of the above considerations, Eg. (4.24) will
become a differential-integral equation concerning the unknown
I'(y,t), and it will be possible to solve it numerically. If we
rewrite it using the approximations described above, we obtain:

—ﬂyb’ﬂox —-—-['( )~ S:' “i[l; y‘f?q
_ r, Y4
,31,212( j—T'y) =i+ (z—Gig) (4.31)

In cases of sinusoidal pitching with a minute amplitude in
which the inclination of the rotor surface can be expressed in
terms of 8 = § sin pt, if Eq. (4.31) is solved sugcessively with /64
slight time intervals, it is possible to find the circulation on
the blade at each time. The 1lift at each time and the moment
around the piltching axis can be sought from this. When the
temporal fluctuations of the moment around the pitching axis are
known, it 1s possible to obtain the pitch damping derivative
by the method in Appendix A.

The vortex fllaments are established in the following manner.
{ 13 :
It is anticlpated that the distribution of the bound vortices
along the blade in the radial direction will be as shown in
Fig. 68. . The trailing vortex generated in the portion between
the blade tip and the point where the bound vortex reaches its
maximum yj-1s believed to be swept up and to form the tip vortex
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core. There are no experimental grounds clearly guaranteeing this
assumption. However, in view of. the'manner of flow in the vici-
nity of the blade tip, learned from the smoke experiments, it 1s
believed that there is not mixing of the vortices generated from
both sides of yp. It 1s belleved that strong trailing vortices,
each with opposite signs, are generated from both sides of y,.
However, one would be justifled in assuming that vortex mixture
will not occur rapidly from the fact that the movements of the two
vortex filaments with different intensities [28] are circular
movements around thelr centers of gravity.

It is clear from the smoke
experiments that the vortices
emerging from inside the blade will
not be swept up rapidly, but can

z be regarded as vortex sheets over
' a considerable period of time.
'+ These vortex sheets, as mentioned

?;—ii;_ — ——|_ above, are replaced by discrete
, ————  vortex filaments.

6p'ils defined as follows.

Fig. 68. Sketch of the circu-
lation distribution in the
blade wing span direction

| . Rg 4+ R)“R; -- R1 i -
= - - 04 . .
Va=—3 7 sty (4.32)

e e o et T

93 18 defined as follows.

bG=1) .
0= (=1, 2,~-J)
==y =R A (4.33)

‘noJ 1s defined as follows.

.,

‘%15 fi’rzf-Ri _ Ra;Rt cos 0

(M.BH)

Therefore, ngy = yp-
It 1s assumed that 6347 = 7.
The j-th vortex filament from the inside 1s considered to be

generated from the midpoint between ng4 and Noj+1° It assumes
positions ny4 and CljﬁT in accordance aith the"vena contracta

ratio shown 1n Table
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Ds=CTR() - (s +70s01) /2 }
Cissr=VPR(1) - (5054 9o341) /2

(=1, 2, J=1) (4.35)

'n 1J and are the positions of the tip vortex éores. They can
be sought g?rectly from the photographs and are shown in Table 5.

The intensity of the Jj-th vortex filament from the inside is
determined as the difference between P s the intensity of the bound
vortex at noj+1s and I'y, the intensity o} the bound vortex at noj -
This is as was described in Eq. (4.30) _

Multhop's equation [3] is used as the interpolation formula
for expressing the intensity of the bound vortex.

Exactly the same technique is used as that which was used
in Chapter 3 to solve the circulation eguation.

Cr b 2 XN
. (?)—nglr(qs‘) ngls‘n"’ﬁivmn”?— (u 36)

The integration of (4.31) is calculated using Glauert's
formula [23]. :

Eq. (4.31) is a simultaneous eqﬁation of the following type.
It 1s possible to obtain I'(¢4).

s e
R:+R1 R$+Rl
—-icb'( 3 5 oosﬂ)

X (20, +0p cos g cos pt) . ’
, 2 L X . 1,
x ,”WJ}T ‘gl’(ﬂ) ”}Elsm ng’q[-—-smn 3 f

|

» nx -1 Y /
\.\( + Z(ﬁ,-—Rl)sm ¢ -7 ;§1 (sin n0y.1 .i‘

2 _ YNy
sinnﬂj) z‘ﬁ"x (z,__,m)*-f-(z—tu)?]

(4.37)
The 1ift distribution 1s sought by means of L' = pb'yar'.

If 6, 1s assumed 1n a suitable manner, and 64 are sought,
and'! the circulation equation is solved, one c n obtain yp. From
thlis one obtalns the primary approximation of 0,, and the same
process is repeated. Convergence for 0) was obéained after two /65
or three repetitions. .
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The moment around the Y axis is

)\ly = Z:}:S:: Ly'v'dy’ cos &g
o (4.38)

Since Lq' ought to be O when y' = R and y' = Ro', the above
equation 1s integrated by using Mul%hop 's interpolation formula [3].

- 2 ‘Iamk,z
My ’)go-«ﬁ-—— 7

~\)‘(“E}l L?'(?‘t) v sirf Pecos gy, |

(4.39)

Here,

-
LE S

The pitch damping is sought by the te¢hnlque in Appendix A.

Ma_ m? S Mycosptdt (4.40)

Typlcal Examples of Calcula-
“tions :

In Fig. 69 are given
examples of calculations of
the circulation and pressure
distributions 1n the radial
direction of the standard
blade at time t = 0. This 1is
an example where there was
extremely close approximation
between the blade and the
strong returning wing tipv
1o Yp vortex in the wake. The dis-

Fig. 69. Circulation and 1ift dis- U02nce between the blade and

the vortex center is 0.8 b
tribution sought by means of theory . “n"05) R'. For this reason
taking into consideration the fluc- >

there 1s a sudden change in
tuations 1n the distance between
the vortex and the blade the direction of the induc-~

tion velocity in the vicinity
. t t ; ;
Time t = 0, ¢ = 0°, 6, = Lo of the y'/R' value of 0.9,
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and it 1s quite difficult to con-

Mo Mo verge the circulation and 1ift
1.00 % distributions. The data in this
; o 0% ™ figure were calculated by assign-
g 9 |- "0 9 «x - ! ing a value of 35 to N in Eq.
v . b (4.36). However, there is still
- ; a "valley" in the circulation and
P . % | 1lift distributions. However, as
Vol x : soon as the vortex goes away
% from the blade, the solution con-
) . vergence becomes good enough, and
¢ the "valley" in the circulation
\ o5 L l distribution disappears. :
\

Thus, although the distribu-
tion does not have a good conver-
gence, the convergence of the

: t moments which are necessary for
: <} i calculating the pitch damping 1s
relatively good. 1In Fig. 70 is
NI recorded the convergence between
0 10 20 30 0 _ % N My, the moment around the blade

Fig. 70. Convergence between root (indicated by the o mark)

My, the moment around the and M¥agthe moment around the

; \ pitch axis formed by the air
g%?ﬁﬁdrggg’pigghggé Ziisfo?int forces operating on the three

cases when the number of terms blades (indicated by the x mark).
A : It is clear that when a value of
N in the interpolation formula ~ .
( ) [sic] has been increased. 35 1s adopted for N, the error of
My becomes about 3%.

94+
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Next, in Fig. 71 are plotted the calculated.values of My
obtained every time the blade rotated 15°. The values are plotted
for one pitching period. Since z -~ ¢ i in Eq. (4.37) is time
dependent, My becomes a time history %ncluding@high frequencies.

In Fig. 72 is given another example in which My cos pt is plotted
similarly. In both figures, 56/144 mm on the abscissa corresponds
to an azimuth angle of 15°. It 1s clear from these figures that a
satisfactory accuracy will be obtained if the My isccalculated for
every 15° of the azimuth angle. My cos pt was calculated for

every U45° of the azimuth angle, ang Eq. (4.40) was integrated numer-
ically to seek Mg. The calculation results are shown in Figss 32

to 43, where they are marked by the o mark and the letter G. 1In

all the figunes, the results obtained by this method display better
results than those obtained by other theories.

In the results marked with G, 1t was assumed that z - £3j in
Eq. (4.37) undergoes time changes. When this was replaced by a
constant value -~fjigm, the results obbtained are those indicated by
the mark F'[;l; undergoes almost no changes depending on the
rotor revolutlion speed. '
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Time changes of
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2 The differences between F and
G indlcate the amount of décrease in
the pitch damping resulting from
the fact that the distance between
the blade and the vortex fluctuates.

An Approximate Calculating
the Pitch Damping

With reference to the method of
calculating the air forces to be used
when seeking the pitch damping deriva-
tive of rigid helicopter rotors during
hovering, it has now been clearly
established by comparing the analytica
and experimental data with each other
that three-~dimensional wing theory
which merely takes into consideration
the contribution of the returning
vortex in the rotor wake is inade-
quate. It is clear that the method
must take into consideration also

© the fluctuations of the relative

positions of the blade and the vortex
in the wake.

Next, let us consider the ques-
tion of how to make approximate esti-
mates of the pitch damping derivative
in designing. Remarkable developments
have been made recently in the agro-
dynamics of helicopter rotors, and
v i attempts have been made to use

electronic computers directly in
solving the aerodynamic load
distributions on the rotors dur-
ing both hovering and forward
flight in states including blade
bending and twisting and defor-
mation of the vortex surface in
the wake. The calculation of
pitch damping also ought to be
incorporated in the near future
as one link in this comprehen-
sive calculating program. This
study polnts out the problems
which ought to receive attention
in one aspect of such a compre-~
hensive method of analysis. How-
ever, in order to carry out such
comprehensive calculationg, it 1s
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Fig. 74. Rotor with spring
constrained flapping hinges

necessary to use extremely
complex programs and large-
size, high-speed electronic
computers, and the calculations
require quite a long time to
carry out. On the other hand,
in the initial designing stage,
it 1s required to find a rough
value of the stability deriva-
tive by a simple procedure.

In bibliography [6],

Beppu introduced empirical fac-
tors € and y into the equation
for calculating the pitch damp-
ing on the basis of the brilliant
idea that there are differences
in the magnitude between those
portions of the air forces oper-
ating on the blade which fluc-
tuate in direct proportion to

sin ¢ and those portions which
are directly proportional to

cos Y. Referring to Beppu's
method, let us here use the
results obtalined in this research
to propose a method of calcu-
lating the pitch damping of
rigld rotors relatively simply,
and compare the results with
Beppu's experimental results.

It was learned as a result
of thls research that the pitch
damping of rigid rotors is much
smaller than one would expect
from two-dimenslonal quasi-
steady theory. This 1is true,
not only because of the so-
called three-dimensional effect,
embracing both the vortex sur-

.face generated from the blade

as well as the returning vortex,
but also on account of fluctua-
tions of the relative positions

between the vortex in the wake and the hlade. Thus, as the quan-
tities representing the.relative positbions, we will plot on the
absclssa the distance h' between the returning wing tip vortex

which 1s closest to the blade,that is the tip vortex generated

from the preceding blade, and the blade. On the ordinate we will
plot the moment generated at the blade root divided by %ﬂpb'sﬁxﬂzﬁgu.
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If we plot the results in Chapter 4, Section 3 on this graph, we
obtain the results shown in Fig. 73. From this, we obtain approxi-
mately:

Moo= —-izpb"’ﬂ“R ox{o 56-+0.025 3~ ¥

(4.41)

As our approximate engineering model of a rigid helicopter
rotor, we will consider a model such as that shown in Fig. T7H4.
This model has spring constrdined flapping hinges. When this
model performs pitching motion around the Y axis at a constant
angular veloclty 0, 1f we assume the blade wing chord to be x,
we will obtain: ‘

-
’x—’—a—ww (4.42)
14 Ky
/2 /2 +'c7z"(_”

Qu'\
(4.43)

h'y is the distance between the blade and the nearest returning
tip vortex during hovering. It is desirable to find it from

smoke experiments. In cases when it 1s impossible to obtain

h'y experimentally, we use the mean downwash of the hovering rotor
u = YCp/2RQ multiplied by the time required for the rotor blade

to rotate 27/Q; this is then multiplied by a modifying coefficient
of 1/2. This modifying coefficient is based on the experimental
fact that the descending speed of the tip vortex is smaller than
the mean downwash on the rotor surface for awhile after the
generation of the vortex. This fact is reported, not only in

this research, but also in bibliography [10,11]. That 1is,

LY

ey G

(4.44)
When we find out M'y, the moment generated on the biade root by
the air forces operating on the blade, nwe can seek the pitch
damping in approximately the same manner as the procedures in
Appendices C and D.

Eq. (C.9) 1is revised as follows:

‘ W z: Mirg- (3fe—Weosd0)
| . +wﬂ+M,n - 0)+09h) | (4.45)

109

/68

————



Here,

110

Eq. (C.10) becomes:

O, =3-tpcR‘9’(6o-— b o0, oos¢,)[o 5 -
+o0. 025{ /2 +c/2( ”°°’¢"Q‘g"}] I

Eq. . (Cy21) becomes:

’Qo=qﬁl—£nwck‘9’(0o— by im ¢q)[0 56

! Y
Y ) 025[ 2, /2( 0003¢)Qn}003¢q+Mr ’

In correspondence to Egq. (D.2), we obtain:

Bt b (o K,

| =—2sinp, 00+ —~oe,69ws dot -.a,o,m

In correspondence to Eq. (C.18), we obtain:

A0+ WID—Lg(5h, cos gy~ E cost |
+200 7 sin ¢y cos gy + D3, cos Py)

+ -é—mcR‘ (18P T cos pg + M S eos* ¢a
| —®@EBg cosgy) =My

6

 ;=0.56+0. ozs ¥ "

&;;p.sem.ozs{"” _a R 2"]

¢/2 /2 0

Solving Eq. (4.48), we find:
R ’ ‘ -—-————;—— .

" pe=T a2 + "/(‘%‘“3) +4-02¢ |

- Pe=ge : X

;” - _fwm:'—f{:? J (K/I)"f'(%-d’ﬂ’)—f ;

L xein@e—g-8-

(4.u46)

(b.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)



Here,

!

1'2 K/I ‘
] = K+ (Lase) |
\ %a”gt 1’

\v\ oy E
) sml ,\/(K/I)L*. ( a’m) 1;

Inserting Bq, éq, and ﬁq into Eq. (4.49), we calculate,

R | (4.53)

and obtain
o 0]
il e (4.54)
Here,
e |
I (4.55)

Finally, let us check thé validity of the equation proposed
in this section for calculating the pitch damping derivative
(Eq. (4.54)) by comparison with Beppu's experiments. Bq 18
written as follows: _

;" Ba=ap—aycos gg—by sin P

 (4.56)
¢ If we use Eq. (4.52), we find |
: o+ vXy
{fk”laééﬁ'( rﬂ)g : - (4.57)
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bl= VWiias (4'58)

If we carry out the calculations, using these in place of Egs.
(5 3.1) and (5.3.2) in Beppu's monograph, we obtain Fig. 75.

. " Conclusion /69
\ T e
M « . The pitch damping was
nis e measured for two types of
401 4 o ‘ rotors and for altogether
; ¥ = p=0.25 ;;. four types of blades, and
\ A10° calculations were made to
j ‘“ 012° discover the pitch damping
x {3\ ) Ly : at which elastic deformation
—30re \\ £=500rpm of the blades would not
. h — x#G-0AcEsE ] | occur from the values mea-
— TEN (-SRI LA 2] sured by means of the aero-
—— sl -3 elastic method. When the

| results were non-dimension-

alized by means of Townsent's
calculated values, it was

_ discovered that they were

.{ ' more or less constant with

respect to the revolution

speed. On the other hand,

it 1s believed that these

values are different for

each blade, not only because

of the experimental preci-

L sion, but also because of

- ’ fon the accuracy of analysis by
Fig. 75. Pitch damping derivative. a3

Comparison of experimental values the aeroelastlc technique.

[6] and calculated values

H
H
f
{
¥
|
i
t

It was supposed that

Key: 1. Values calculated by the non-dimensionalizeq

S50 (5-) In bisilography 6]  meSsurement vaues are mon

ir forces which operate in
2. Values calculated by a
Eq. (6-5) in bibliography [6] pitch damping are unique.
- The pitch damping was cal-

"culated using a total of
seven types of models for
hypothetical rotor blades 1n
which no elastlic deformation
occurs at all. The first
five types are exlsting types, and the remaining two were specially
designed so that it would be possible to obtain an idea of the
pitch damping.

3. Values calculated by
Eq. (4.54) in this paper
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S In Fig. 76, the values obtained
| TR « by averaging out the pitch angle data
4 ! . for certain blades are shown by the
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Fig. 76. Comparison of the
measured values and various
theoretical values of the
non-dimensionalized pitch
damping from.whlich the
"effects of bending defor-
mation of the blade have ' =
been removed.
A. Two-dimensional quasi-
steady theory
B. Two-dimensional unsteady
theory '
C. Two-dimensional unsteady
theory including vortex in
wake
D. Three-dimensional quasi-
steady theory
E. Three-dimensional
unsteady theory
F. Three-dimensional quasi-
steady theory including the
effects of the vortex In the
wake :
G. Three-dimensional quasi-
steady theory including even
fluectuatlions in the distance
[cont. on next page]

marks o, A, and [_|. The calculated
values for the seven types of models
are also shown in the same figure.

A represents Townsent's theory,

B represents Theodorsen's theory,

C represents Loewy's theory, D repre-
sents Ashley's quasi-steady theory,
and E represents Ashley's steady
theory. F and G were derived from
Ichikawa's linear theory and were
derived under the assumption that the
contribution of the distant vortices
is small and that there is a small
inflow.

The difference between A and B
comes from the unsteady effect with
respect to two-dimensional wings.

The differences between A and D or
between B and E are attributable to

the three-dimensional effect. The
difference between B and C is attri-
butable to the contribution of the shed
vortex in the returning vortex. The
difference between D and F 1s attri-
butable to the contribution of the
trailing vortex in the wake. The
difference between D and E is

“attributable to the unsteady effect

in the three-dimensional theory, but
the contribution of the shed vortex
in the returning vortex is not
included. The difference between

F and G represents the amount of
decrease in the pitch damping caused
by fluctuations in the distance
between the blade and the Vvortex.

There are still diwergences
between G and the experimental
values. However, it is belie¢ved that
these may be overcome by the fol-
lowing means. (1) Improvements in
the aeroelastlc methods of analysis,

- expeclally in the method of deter-

mining the bending mode. (2) Improve-

"ments of the experimental precision.

(3) Taking actual measurements of

. A}
AT
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between the vortex in the the vortex distribution during

wake and the blade pitehing and using them in calcu-
lations.
Key: 1. B blade
2. C blade We proposed an equation for /70
3. D blade calculating simply Mg, the deriva-
L. Average of mea- tive of pitch damping occurring when
sured values the rigid rotor is pitching at a

definite angular velocity. By com-~

parison with the experimental values
in bibliography [6], it was proved that the results obtained by
using this equation are qulte good.

Postscript
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. gulded this research for a period of five years. Although the

results, viewed today, do not seem to be entirely sufficient, the
writer 1s profoundly aware of his deep indebtedness for the
assistance of many persons. Technical offlcials Ichikawa and Beppu
of the Natlonal Aerospace Laboratory and Assistant Professor Azuma
of the Space Laboratory provided various pleces of advice and
encouragement, and assistance in experimentation was provided by
Mr. Naito of the Kubota Iron & Machinery Works, Ltd. and by the
personnel of the Central Research Laboratory, the Washizu Research
Laboratory, and the Flight Experimentation Section of the National
Aerospace Laboratory. In producing the mnotor blades, Mr. Toma of
the Workshop and the Yamaguchl Kikil Selsakusho were so good as to
produce the extremely complicated items. The large amounts of
calculations were performed at the Large~Scale Computing Center
of Tokyo University and at the Computing Center. of the National
Aerospace Laboratory. Profound thanks are expressed to all of
these. :

114



9.

10.

REFERENCES

Ichikawa, Teruo, "Linear theory ofirotors (I), Lift surface
theory," Kokii Uchu Gijutsu Kinkyusho Hokoku [Technical
repOﬁts of the National Aerospace Laboratory], TR-68
(1964),

Ichikawa, Teruo, "Linear theory of rotors_(II), Lift line
theory," Koku Uchu Gijutsu Kenkyusho Hokoku [Technical
repgrgs of the Natlonal Aerospace Laboratory], TR-85

Ichikawa, Teruo, "Linear theory of rotors_(III), Methods_of
solving 1ift 1line equations," Koku Uchu Gijutsu Kenkyusho
Hokoku [Technical reports of the National Aerospace
Laboratory], TR-100 (1966). :

Reichert, G. and Oelker, P, "Handling Qualities with the
Bolkow Rigid Rotor System," paper presented at the 24th
Anggal National Forum of American Helicopter Society, May
1968.

Payne, P.R., Helicopter Dynamics and Aerodynamics, Pitman &
Sons Ltd., 1950,

Beppu, Goro and Oka, En‘ichi, "Concerning pitch damping of
rotors with spring constrained blade flapping motion,"
Koku Uchu Gijutsu Kenkyusho Shiryo [Materials of the
National Aerospace lLaboratory], TM-164 (1969).

Townsent, M.W., "Stabllity and Control of Unducted Stand-On

Helicopter Preliminary Theoretical and Flight Test Results,"

Princeton University Dept. of Aeronautical Engineering
Report No. 4ol, Nov. 1957.

+

Olossen, C.0. and Orlik-Riickemann, K., "An Electronic Apparatus
- for Automatice Recording of Logarithmic Decrement and Frequency’

of Oscillations in the Audio Frequency Range," FFA (The
Aeronautic¢al Research Institute of Sweden) Report No. 52

(1954).

Yanagisawa, Nitsunori, "Trial manufacture of prototype damping

meter," Koku Uchil Gijutsu Kenkyusho Shir%a [Materials of
the National Aerospace Laboratory ], .

Jenny, D.S., Olson, J.R. and Landgrebe, A.J., "A Reassessment
of Rotor Hovering Performance Prediction Methods," Journal
of A.H.8. 13(2), (April 1968).

' < L - o
3‘.‘> [ B g [

R R LT R R

/ 115



11. Gray, R.B., "On the Motion of the Hovering Model Helicopter
Rotor and its Application to the Calculation of the Span-
wise Aerodynamic Loading," Princeton University Dept. of
Aeronautical Engineering Report No. 313 (1955).

12. Simmons, I.A., Pacifico, R.E., and Jones, J.P., "The Movement,
Structure and Breakdown of Trailing Vortices from a'Rotor
Blade," CAL/USAAVLABS SYMPOSIUM PROCEEDINGS 1, Propeller
& Rotor Aerodynamics, (22-24), (June 1966).

13. Gessow, A. and Myers, G.C., Jr., Aerodynamics of Helicopter,
Macmillan, 1952.

14. Loewy, R.G., "A Two-Dimensional Approximation to the Unsteady /71
Aerodynamics of Rotary Wings," J.A.S. 24(2), (Feb. 1957).

15. Daughaday, H., Duwaldt, F., and Gates, C., "Investigation of
' Helicopter Blade Flutter and Load Amplification Problem,"
I.A.S. Preprint no. 705, (Jan. 1957).

16. Brooks, G.W., and Silviera, MiA.,"Dynamic Model Investigation
of the Damping of Flapwise Bending Modes of Two-Blade
Rotor in Hovering and a Comparison with Quasi-Static and
Unsteady Aerodynamic Theories," NASA TN D-175.

17. Timman, R. and van de Vooren, A.I., "Flutter of a Helicopter
Rotor Rotating in its own Wake," J.A.S. 24(9), (Sept. 1957).

18. Theodorsen, T., "General Theory of Aerodynamic Instability and
the Mechanism of Flutter," N.A.C.A. Report 496, 1935.

19. Ashley, H., Moser, H.H., and Dugundji, J., "Investigation of
, Rotor Response to Vibratory Aerodynamic Inputs," WADC
TR 58“'87, Octo 1958&

20. Reissner, E., "Effect of Finite Span on the Airload Distribu-
tions for Oscillating Wings, I -~ Aerodynamic Theory of
Oscillating Wings of Finite Span," NACA TN-1194, 1947.

21. Reissner, E. and Stevens, J.E., "Effect of Finite Span on the
Airload Distributions for Oscillating Wings II -- Method
ofuCalculations and Examples of Applicationy" NACA TN-1195,
1947

22. Moriguchi, Shigekazu, Sugaku koshiki [Mathematical formulas],
I, Iwanami.-

23. Rauscher, M., Introduction to Aerodynamics, John Wiley & Sons,
Inc., 1953,

116



24,

25.
26.

27.

28.
29.

30.

31.

32.

Bisplinghoff, R.L., Ashley, H., and Halfman, R.L., Aero-
elasticity, Addison-Wesley 1955.

Rabbott, J.P. Jr., "Static-Thrust Measurements of the Aero-~
dynamics Loading on a Helicopter Rotor Blade," NACA
TN 3688 (1956).

Meyer, J.R. and Falabella, G. Jr., "An Investigation of the
Experimental Aerodynamic Loading on a Model Hellcopter
Rotor Blade,™ NACA TN 2953 (1953).

Sachio, Jiro and Ika, En'ichi, "Experiments concerning_rotors
of helicopters hovering near the ground surface," Koku
Uchu Gijutsu Kenkyusho Hokoku [Technical reports of the
National Aerospace Laboratory], TR-113.

Lamb, H., Hydrodynami¢s, 6th Edition, Dover Publications, 1945,

Yamana, Masao and Nakaguchi, Hiroshi, Hikoki sekkei ron
[Alrcraft design theory], Yokendo, 1968, pp. 486.

Watson, G.N., "A Treatise on the theory of Bessel functions,"
Cambridge.

Moriya, Tombjiro and Washizu, Hisaichiro, Rikigaku gairon
[Outline of dynamics], Baifukan, 1970.

Minorﬁky, N., "Introduction to Non-Linear Mechanics" Ann Arbor,
1947.

117



APPENDIX A [32]. CONCERNING THE PITCH DAMPING DERIVATIVE

When a rotor blade such as that shown in Fig. 6 performs
pltching motion without rotating, its kinetic equation may be
wrltten as follows if we lgnore the air resistance and the frictional
forces: : -

I+ WIs=0 (A.1)

When the rotor is turning, the moment due to the air forges
operating on the blade and to the blade deformation y(0,8,...)
will operate. This moment v(8,8,...) is quite small in comparison
with the moment of inertia -I6 and the restoring moment -W1l6.

The kinetic equation for the system may be written as follows:

76,0,y +Wih=0 .
L Io—y(8 )+Wi=0 (A.2)

Let us consider a case when the rotor is turning and a moment My
is applied from outside so that the pitching movement will become
6% = § sin pt. Particularly in cases when p2 = W1/I,

I0% - y(o*,0%,,,.) + Wlo¥* = MY(t)' That is,

-0, p)=Myy
(A.3)

Let us return once again to Eq. (A.2) Since 7(6,6...) is
present in the motion of the system, we assume that it will be
damped gradually, and 1t is our desire to seek the derivative of
damping. In cases when y = 0, the system 1s described by Eq. (A.1),
" and the solution 1s 6 = 8§ sin (pt + ¢), 6 = Bp cos ‘(pt + ¢). In
cases when Y(0,0,...) 18 zero, the movement of the system will
become somewhat different, and it is believed that § and ¢ will
fluctuate together with the time.

9=Bpsin(pt+o) A. 4
G=8p cos(pt+cn) ( )
| (A.5)

If we differentiate Eq. (A.U4) by the time, we obtain:

(dzi éin(pt+¢(¢,) +a(¢)PmS(Pt+¢(b)
L +dpndoos(pttdw) /
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If we take the difference between this and (A.5), we find:

B sin(pt+ ) +Fuod cos(pt-+0) =0

(A.6)
If we differentiate Eq. (A.5), we obtain:
N "‘éP 603(3" +éwn) ~8yp*sin(pe+doy) i
- v.‘-au)ﬁsﬁr(}ﬁ-?’_(n) (A.7 )

We insert 6 from (A.l4) and 3 from (A.7) into Eg. (A.2).

"u{P’CﬁS(ﬂ +éy) — Iy pd sin(pe +¢«b) =/l

- (A.8)
If we solve (A.6) and (A.8) with respect to % and ¢,
it
L 7;005(1’15+¢<¢)) (A.9)
g=— It sin(pt+¢r,) :
) (A.10)

Since the ¢oeffi¢lents on the right sides of (A.9) and (A.10) /72
are both minute, the temporal variation ratio of 6( and ¢ (¢
is small. Therefore, when we are seeking ﬁ(tg)/ﬁ(t 3, the amplitude
ratio of the angle of pitch between time t; and time tp =t + 2n/p,
we may assume that there are almost no changes of 8(t) and ¢(t)
between tj and ty. Since in this case the motion of the system is
- close to a sinusoldal movement with a period of 2n/p, it is also
possible to seek y by means of Eq. (A.3)

9(:9—5(:08 ~f cos(pt+¢<:.»dt;

S T-cos([’t+¢(ti))d‘
LI 1

I RN e

| +9(0)t) f
’% *T@-S mmw(z,»dt%
% =Tl T RPN
e P00 Ip (A.11)
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In systems expressed 1n terms of a differential equation with
two-storied constant coefficients, 1,{6(t2)/8(t1)} x 2I/(2n/p)
will be the damping coefficient. 1In accordance with this, let us
agree to call (A.11) multiplied by 2I/(2n/p) the pitch damping
coefficient, and adopt the followlng definition:

1
31573535 7~am0”+¢00ﬁ0
—5—{"’—8 'i‘,ﬁm(ﬂw(m)dt "

it

(A.12)

General validity will not be lost even if tj 1s set at ¢(ty) = O.
The following can also be written:

B N C TP
M= rbdt= Mybdt
APPENDIX B
Concerning the methods of calculating Np(q), Ng(q) and Ng(t).
(1) Method of Calculating Np(q)
We rewrite Eq. (3.23).

) . w0 ’ )e 124 ’
”NA(‘I)—-QS m‘d‘

(B.1)
~If q > 0, we posit Ay = ql. Then,

Nyg)= S”Plig—-;dl-l—zq[sa-;o%l;
! £= singl e

: _-iso Vit dl](
According to bibliography [30], p. 172, the foliowing equation

applies when R(v + 5) 20, x>0, and Iarg zl < 5.

(B.3)
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o COSQl n
-S SR dl= AM@

(B.4)

According to bibliography [30], p. 332, the following equation
applies when R (v) > 1 and x > 0:

\L (#y=I_ () — -— (_x) S"‘si’nxw ,

g r(”‘z‘)r(‘z‘) ‘o
A A (B.5)
Here, \ :
N‘v.”(f—)yu.md 6
L= =L (8-6)
"“'“1‘ m+ )’(v+m+5) |
| o 74 ) E“
BN SRL 2= (@)~ Lo@)] (B.7)
N‘(q) =1— tq[Ko(q)—t—-(Io(Q) Lo(‘]))] :
| e (B.8)
When q < 0, it is obvious from Eq. (B.1) that
| Na@=—1-ig Ke—a) =i Shu—q)
"L"A(*_q’] ~ (B.9)

At the ultimate’extreme, when g has been brought close to 0,

limh@=0 )
hm Lo(g) =0
hm gKo(g) =0

umm(q) i ‘ (B.10)
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(2) Method of Calculating Npg(q)
We newrite Eq. (3.23)

o -1
eSS

M=l i

(B.11)
If q > 05 we posit Ay = ql. Then,

Ao et 1 eosgl—isingl
Na(g)=— — =1 cosql q
o) qL i =g Ay 4

(B.12)
If we use Eqs. (B.3) and (B.5), we obtain:

‘ 1¢= cosyl =K K
L ?So —-——-———-—»-[lz_'_nm dl=Ki(q) (B.13)
“1pe singl s
gk e g e L)

hY

(Bflu) /73

Lo N;(q) =K (q) —;‘+-’55;[I;(q) ~—L.(q)i '
s TR 2 B (B.15)

When q < 0, it is clear from Eq. (B.1l) that

No@=—Ki—g) 4= gy L]
wemTATormgho-Lear (5.16)

.

‘ At the ultimate extreme, when q has been brought c¢lose to 0,
we obtain: :

: ?gﬁ@0=0

b im Ly () =0 .

}qw .

Vi i

it Ky (g) ==

i’f.% 1(9) F

J 1 '

-0 {Q? 7 Tl (B.17)
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(3) Method of Calculating Ng(t)
We rewrite Eq. (3.23).

¢ t C"‘l’w iy .
Ne(f) S [1/ RN ] ] FA & ;
, | | 4 (B.18)

If © > 0, we posit A, = tx. Then,

Neto)= S[—:—,—;f —1] e dx—~1.+1.+1.

(B.19);

e-ficx

dx

) ke o T7sm1] (5.20)

Let us develbp the integrand in a Taylor serles and integrate.

ST ] (10 (25 —1) U] (i) n-tpel
= £ (=DI@= 1 (i)

Pt S s | J12i(n—2j+1)!
xon 1 o (B.21)
X sl U
X3 1 etz !
‘(B\) IPSn[«?ﬁT—I]de (B.22)
Let us integrate using Sympson's formula.
_t i e-irx
© =, [ 1] o ae | (B.23)
[ 1 Yz 1
| W2 I vIFyEe T
o101 11 .31 51
4" PR I IRl b T by
! 3 1 -
| +.1...2..§>to.. ...... | (B. 2“)
» emies cos Ay —isindy
Sx. = = S """"i,‘""""“f"
=Ci(rXy) +£{§--Sg(th) }
— B (B.25)
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o getrx it (2,,_.1'_1)!(._‘,'1.)1-1-
Sx, a? dxw= ,;, (2n—1)1 X2n-4
~ir)2n-1
\‘: x¢-rxﬂ+ ((2'::).17;! {_C‘(‘YX’)

(S X) --g-)}

- (B.26)
At X, >'1, when n becomes fairly large, 1t can be omitted because

e e“*" ’ X-tn+D "
: le. a:"' dzl SI Zn 4= 2n+1

(B.27)
I3vcan be calculated using (B.25) and (B.26).

When t < 0, it is obvious from Eq. (B.18) that

Ne())=—Ne(~1) -

(B.28)

At the ultimate extreme, when t has been brought close to 0,
we can use Eq. (B.18) to obtain:

( lim Nooy= tim ({2 w,,“, _ ] 2
\
| st

1 iy’ |
\} rig:{So VIl )e‘r
ey 2 e [
()

| 1 11,
t xgdetl g e

. . £ ..,
. %rggx}-logt-!-ff ,2‘,“‘+l082

(B.29)
Generally speaking, S .

5 x, s ’
!hgﬁc(t)-lim L {hgirl+r+3if1??} (B.30)
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APPENDIX C. KINETIC EQUATION WITH THREE DEGREES OF FREEDOM FOR
SIMPLIFIED RIGID ROTOR MODELS

Let us analyze the movement of a rotor blade system with spring
constrained flapping hinges such as that shown in Fig. 74. When
the system is constrained so that it cannot have rolling motion
during hovering, the system's movements will have three degrees of
freedom: pitching, flapping, and rotation around the shaft axis.
It is assumed that the system consists of the blade portion and
the pendulum portlon which performs pitching only. A precise
kinetic equation 1s derived for cases when the moment M, around
the pitching axls and the torque MZ around the shaft ast are added
to the system from outside. As for the alr forces operating on the
blade, we will consider only the left components based on two- /T4
dimensional quasi-steady theory.

: Next, we will derive an approximate kinetic equation for cases
when ¢ has a constant value {§ and the movement is also leisurely.

(The position vector » at a point on the blade corresponds to
Eq. (1.5)

'_"-:=f003 pq iq*'l'rsin quq* ( C ¢ 1 )

The veloclity vector v at this point corresponds to Eq. (1.6).

0= (rsin fysinggf—rcos By ig*
+ (—rsin By + rsin By cos gd ) jg*
+ (rcos ﬁqﬁq—r cos fycospgt) kg* ‘
| (c.2)
The kinetic energy of the blade is o
e =
! —2sin B cos By sin Peded +cos?Budy? .
i + Bt — 2 cos P B0+ cos¥pd?)
__ The— (c.3)
The kinetic energy of the pendulum is

1
T~ 2o
I (C.h)
The position energy of the pendulum is

e (@.5)
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The strain energy stored up in the spring is

U—qgo 2 ﬁq (0.6)
In casés when virtual displacements GBq, 66, and 6y have -occurred
in the three degrees of freedom Bq 0, "and tp, the virtual displace=
ment Suq occurring at a point on the blade will be:

‘m(mwrwmmwﬂwmmﬁ
+80 cosPyrsin Bg)jg* + (rcos 8,
X 8By —08 cos pqrcos o) kg* -

(C.T)

When seeking the air forces operating on the blade, if we consider

~«only the thrust components and use two-dimensional quasi-steady
theory, we obtain:

Faﬂr:é— pa'crs¢?dr[0'° + %— cos ¢y o %]
’ X [—sin fgle*+cos Bokq*)

(c.8)
The virtual work 1is:
Caw= z‘S Fuq: énqdr+[Myi+Mzk] 00441 (c.9)
If we take the varlations for By, 8, and ¢,
Qne= l’ueR‘!ﬁ’[ﬂo-i--Jcow, %] ot (C.10)
‘Ql”—"" o R‘{&’ﬂ-{— ‘cos¢_‘ MM}
T %M | . (C.12)

The Lagrangé equations are:

(21e)- e

() ()

:é;[a;“&]a. 8
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If written concretely, they are:

| Ip(Bg—8c05 g+ 20 cosysingg-+sin fycos by
' ——o’sinﬂqcosﬁqsin'sl’q)
V‘;‘ -5 L et (0oy’+y0 cos g ~ha) +Kby=0
(C.13)

g I+ Wig— ~I3(5 s cosgq~65 cos

i H20F costhy sin gy cos g+ 5 sin ﬂqcosﬁq

| Xeosgg—24 ¥ sin?B, sing obe—24 T sin B '
Xcos Bgsindg, B, -0' pX cm"qum’g g+ sin gy

i

; Xcosﬂqsmyq) 4= pacR‘ (B9* L cos ¢,

+04 5 WS’¢Q‘¢ 2 Bycosdg) =My J

Ip(~2¢ 3 sin Bq cos Bofla—20 3 fqcos *gsing,
~8 ¥, sin B cos 8, sin Pq+02 3 cos?3, Lm Pecosdy
+¢v X cos?3,) = M

(C.1h)

(C.15)

Next, 1in cases when the rotating angular velocity w around the
rotor shaft axis has a constant value §, when B, B/2, 8/R, and
0/92 are minute, if we omit minute quantities of the third order
or above, we obtain:

TB__{Q_ (—290 5, By sin g+ 22 5 (1—-ﬁ¢’)

+L 208 +6* 3, cost ¢, SR
By 54’005% 7) (0.16')
If we use thls, the kinetic equations become:

1 puca _ ey
|~ g PacRI OuP+ 00 cos 6y — U} + Ky =0 C.17)

{18+ Wi~ In(5Bq cos fg—1 5 cos'gy
V200 Tisin g cos g+ 023 By cos )
by %pacR‘ (Ol Lcos fy+ 20 T cost gy . -
~Q%pqcos dg) =My

18(—203.PoBy~20 T By sint g —F 518, sin ¢y )
+00%; sin @y cospg) =Mz (C.19)

(c.18)

Naturally, these agree with the data obtailned before in the strict
kinetic equation, where it was assumed that = Q and the minute
quantities of the third order or above were ’omitted.
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APPENDIX D. DAMPING COEFFICIENTS SOUGHT FOR FORCED VIBRATIONS /15
Let us conslider a rotor with a number of blades Q of 3 or more

and with an I, much larger than Ip. We will consider cases in which

the pitching moment My and torque Mz are administered to this rotor

from outside, and the rotor 1s made to continue movement so that

6 = 8 sin pt. As was defined in Appendix A, the damping coefficient

1s determined by: :

(D.1)
RI7Tp.
If we rewrite Eq. (C.17) and use y = pacR”/IB and Cy = K/IBQ‘?,

1Y)

Here, p

§+T/8'gﬁ+ (1+Ck)ﬂ’ﬁ;§ms¢ e
-zgﬂsin¢+r/8-ﬂécos_;[&ﬂg.g):go ‘ (D.2)

Then the forced vibration solution for flapping will be:

§§=B,{“(%wmap)sin@wc-z.)'

L gapcos@wt—zo]mz{(%h’

s (p—pt— i)+ Dpcos@—pt—t)}

. ST

. (D.3)

Here,
?é““ﬂv«/mdrck)m—(}x‘#ﬁ‘} 2+ f;/sm(.q e (D.4)
i ' (D.5)

- ' 1 o
KB"'VTT( T — (= PP+ /8P —pY

} .
,? cos = {(1+Cy) P~ (2+ )%} By,
; sindy=(1/8)2(2+2) B, (D.6)
© oosky={(1-CP—(2—p)Y By, -
‘f sink=(1/8)2(2—p)B;

(D.7)
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If we substitute Eq. (C.18) into Eq. (D.1l), we obtain:

Mr—- rrﬁ‘p S ' {-l—pacR‘ (60f2* 3, cos ¢

z +80 T cos’p— R 3 cos )~ IB(Z»Q“’“’
: ~§ T cos?y+220 T sin ¢ cos ¢

+!)’}:ﬁcos¢)d]dt ) (D.8)

The first term on the right side of Eq. (D.8) is the contri-
bution of the moment produced around the pitching axis by the air-
forces operating on the blade, and the second term on the right
side is the contribution of the moment produced around the pitching
axls by the force of inertia operating on the blade. Eq. (D.8)
_corresponds exactly with Eq. (1.22) in the main text. If we sub-
"stitute Eq. (D.3) into Eq. (D.8) and carry out the calculations,
we obtaln: ‘

“\M‘"'TQ‘ ”“R"’--Q—ﬁafR‘[{ 3 (.0+p)peosz;<?
‘ j

\ + (ﬂ+1>)[.’cosl,—-—-(0 +£)2sin ll}Bl

H-F@-preosit@-pacss |
\_ _{é(!)—p)ﬂsinig}Bg]-f-—%—IBQ ’

i

‘: x[{ —51-(2 2+ p)% sindy—p(20-+p)sindy
L 1
1 -i%p(zn+p>cos11}31+{—3—(2!2—;)“ .

‘ X%;ﬁnh+pmﬂ—ﬁﬁnh

+%69(20—p)coslg]33] (D.9)

’

The first, second, and third terms on the right side of (D.9)
correspond with the first, second, and third terms on the right \
side of Eq. (1.23). If we contihue the calculations further, using

p £ p/Q, we obtain:

M/’ 2 {(—}pn)(r/s) (48 + (/19 (14 C~ 42 |
‘ +[s2 (AT o= AT PG/ aT?

+ -p/2) (r/§) (1—=p)+(r/16) {1+ Co) — (1 —p) %}
{A+Co) —(1-p)?12+ (7/8)*(1—p)? }

(D.10)
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APPENDIX E. DAMPING WHEN THERE ARE FREE VIBRATIONS

Let us consider a rotor with a number of blades Q of 3 or more
and with an I, much larger than Ig. We will seek the characteristic
root of pitchgng when this rotor performs free vibrations of pitching.
It can be demonstrated that the real part of the characteristic
root has the following relationship with Mé as sought in Appendix D.

I‘IJ

P
r=3r,

(E.1)

In cases when the pitching consists of free vibration, only the
torque My will be appllied to the rotor from the outside, and the
rotating angular veloclty around the rotor shaft axils will be
maintained at a constant value . The kinetic equations 1n this
case will be:

N
(o)}

47“&;3a3%+mwdnm+9%Q (E.2)

- —-—;—pacR‘ (Bof2* + 26 cos o, —28,) +K'9¢=Q»j/

7
)

'; 1,8+ WIB—15(3Bq cos gg—8 Scosdy
| 42003 sin ¢ cos gy + 2 Thgcos ¢y)
|
|

+—8!-pacR4(0.,!J’Z}cos¢.,+Qéz}cos*¢q ‘ (E. 3)
—~ 0% g cosgy) =0 '

‘, IB(*ZQZf’qaqueEﬁq sin gg—0 3By sin ¢
i 0% sin ¢y cos dg) =M; ; . (E.B)

~ Actually, (E.4) is the equation defining the torque which ought to
be applied from the outside because the movement described above
1s continued.

(E.2) and (E.3) are linear simultaneous differential equations
containing variable t in the coefficients 1n the form of sin ¢
and cos P. Now let us change the variablesa ,

Y

{" pqzao(”-—ai(t)ws¢i"“bi(ﬁsin¢q / ) (E L 5 )

ﬁ¢=dﬂ" (dl+blmcos¢' (61—a‘{))5m ¢‘ .
: Be=20- (&+26xﬂ-—a;ﬂ’)cm¢,- (5,._ 2419\
[ ~—-baﬂ’)sm ¢, -
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In particular in cases when Q 2 3,

Z 003%5«’-"-""%‘ (a1 +2b,2—ar )
I , ,
X Ws¢qﬁq=-»§-(dl+bln) .

Despbe=—La

- Inserting this into Eq. (E.2), we divide the terms up into
those involving sin ¥q and cos Yq and those not involving them.

%P‘“‘R‘ndo +(159'+K)ao ’

. . .—=%—pacR‘!)’0,

’}Iibarl‘
(E.6)

| Ip(ty+ 22— )~ AR+ 01D)
| — U+ K)ar—158 --;- pacR\=0 (E.T)
x —~1Ig (5;-—- 20,2 b, () ~ %— pacRQ () :

. "i.-—(IBQ’«l-K)bH-ZIBQd:O.
| ) (E.8)

If we insert this into (E.3), we obtain:
; 1,,3+Wzo-1,,{ _%_a,;ég,g;alm) _ —2'Q‘ P
. ‘_-Q-ﬂfa‘i}+lpacR‘{~g*m

If we reorganize (E.6), (E.?), (E.8), and (E.9) using L = Ip/Ip,
we obtaln:

dn+7/ﬂbdn+ (14+-Cp) Pay= (1/8) %8, " (E.10 )
d|+f/80d1+CgD’a1+2géx+ (r/s)n’bl
+0+(/8)20=0 (E.11)
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2001+ (1/8) Day—by— (1/8) 21— Cr 2%,

+208=0 - - (E.12)
214 (7/8) 081+ 226, + (r/8) Py + (1-+2L/Q) ¥
+ (1/8) 20 4-2p' L/ Q19 =0 (E.13)

This signifies that (E.10) is independent and that the coning will
finally settle down to (v/8)(1 + Cy). (E.11), (E.12), and (E.13) are
linear simultaneous differential equations for the constant coeffi-
cients.

Eq. (E.3) 1s the simultaneous equation for pitching. Since
I, 1s sufficiently large in comparison with Ip, the pitching
movement ought to be close to a sinusoidal movement with a perilod
of 2n/p. It ought to be possible to write two of the roots of the
characteristic equations obtained from (E.11), (E.12), and (E.13)
.in the following manner:

| §2 & (p + e)ni
Naturally, ¢ and € will be small enough in comparison with p.

If we posit  a=Awi®, b=Bwot, 0=Bedt

e

P+ @/BIFCe 20418 B4 (r/8)3

24+7/8 ~ (R4 (1/8)1+C) 22 =0
B4 @8)2 24+41/8 A+2L/QR+G/8R+2°L/Q |
That 1s,
[B+@/BI+Ce 241/ Ry | !
20+1/8 —@B+(r/Ba+C) 28 =0 '
- 0 Bipt i
(E.14)
Two of these roots are:
A=dx(p+e)i |
o (E.15)
Here,
#=CQ/ (L)
B (E.16)
is a minute quantity since L is large enough. /11
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If we substitute (E.15) in (E.1l4), assuming that x, 6, and €
are minute quantities, it will be possible to determine § and e
by omitting the minute quantitiles of a high order.

- —2(7/8)1 [2{(Ck—p?)*— (1/8)p*} +2((X/8)*—4p’}]
N [4(Cae—p®) (/8)p+8(r/8) P12+ [2{(Ca—p*)*— (1/8) 'p’} 2GR =T

{—x[p(ck—p’)+(r/8)’p+4pl [2{(Cr—pY)*~ (1/8)'p"} +2((r/8)*—4p*}) — x[(r/s)p*} f
e — (Ce—P) (1/8) ~2(1/8) | (4(Ce—p?) (1/8)7+8(r/8) ] | ;
T TG G 8GRI (Ce—p )~ (/B PG (E.18)

: {—kp(Ck—p’)+(r/8)’p+4pl [4(Cx—p®) (1/8)p+8(r/8p)1 +£[(1/8) p*— (Ce—p®) (7/8)} (E.27)
3

From (D 10), we find that

{—sl(Z-H’) (7/8) (1+p) +/8) {(1+Ce) — (14+p)*}] [{(1+Cr¢) - (1—1’)’)’4- (7/8)’(1—}’)’]}
My \—xl[@—p)(/8) (1—p) + (;/8) (14 Cy) — (1=p)} {1+ Ch) — (14p) 2+ (1/8)* (1 +p) "
2n,0- 0+ Co — A+, P+ /8 A+p) T A +Co — 1—p)}*+ (1/8)*(1—-p)*]

Cnmt o (B.19)

This indicates that (E.17) and (E.19) coincide.
The denominator of (E.17) is

- 16(Ce—p)*(1/8)*p*+64(Ce—p*) (1/8)p*+64(r/8) p* +4{ (C—p%) *—4p*}1
+8{(Ce—~p")2—4p*} (r/8)*(1—~p*) +4(r/8)* (1—p?)* ‘

=4{(Ci—p*)*—4p"}2-+-4(r/8)* (L —p) *+-8(Ce—p")*(1/8)* (1 +p*) 4+ 64(Ca—p*) (r/8)’1”
+64(1/8)%p*—32p*(r/8)*(1—p*) '

The denominator of (E.19) is : \

HU(Ce—p) 1 —4p? 13+ 4{(C—p?) ~2p}*(r/8)*(1—p)? o
4{(Ce—pY +2p)2(y/8)2(1 +0) +4(r/8)4 (1—p2)1

=4 (Cz—p’)*—-4p’}*+4(r/8)4(1-p1)’+8(c —PpEy2(y/8)3 » ‘ ‘
+32p’(r/8)’(1+p’) ) P) e +64(Ck??f)-{('r/8)’y

Thus, the denominators of (E.17) and (E.19) are equal.

The numerator 61‘ (E.17) is

133



—€4(Ce—p")*(1/8)p*+8(1/8) (Ce—pY)p*+4(Cr—p*) (1/8) %+ 8(7/8) p*+ 16 (Ce—p*) (1/8) p?
+32(r/8)p*—2(1/8) p* (Ca—p) *+2(r/8)%p*—2(1/8) *+8(1/8) p* + 2(C~—p*) *(r/8)
=2(r/8)°p*(Ce—p*) +2(Ce—p®) (1/8)*~ (Cr—p")8p*(1/8) +4(1/8) (Ce—p)?
—4(r/8)%p*+4(1/8)*—16(7/8)p*}

=—x[2(/8) (Ca—p*)*+ (1/8) (Ce—p*)*(2p*+4) + (1/8)*(Cx—p*) (2 +2P’)
+16(r/8) (Ca—php*+ (r/8)3(2p‘+2p’ +4) + (7/8) (8P‘+ 161")]

The numerator of (E.19) is

- —£L(/8) (P*+P+2) + (1/8) (Ce—pM] [(Ce—p")+4p (Cr—p*) + (r/8)*(1—p) 3+ 4p]

; =&[(r/8) (p?—p+2) + (1/8) (C~p») ] {(Ce—p") 21— 4p (Cr~p®) + (7/8) (1 +p) 2 +4p%)]

(= —£[2(7/8) (Ce—~p*)3+2(7/8) (Ce—p*)*+ (1/8)8p* (Ce—p?) +2(r/8)* (p*+2) (1 +p%)
+4(r/8)3(—p*) +2(1/8)3(Co—p?) (1+p%) +8p*(r/8) (p*+2) +8p*(1/8) (Ce—p"H]

{ =—x{2(r/8) (Cr—p¥ ¥+ (7/8) (Ce—pH2(2p*+4) + (1/8) '(CE"P’) (2+21”) +16 (r/B) (Ce—p")p?
+(r/8)*(2p* + 2p*+4) +(1/8) (Bp‘+ 16p) T

Thus, the numerators of (E.17) and (E.19) are equal.

N M _,
17 e (E. 20)

In other words, the real part of the root of the characteristic
equation is equal to Mé/2Ip.

'APPENDIX F. ENERGY BADANCE IN CASES OF FORCED VIBRATION

Let us investligate the manner in which the work done by moments
My and Mz, which are applied from the outside 1n cases of forced
vibration (refer to Appendix D).is consumed If we use the flapping
sought by (D.3) and calculate LBy cos V¥q q cos Vg, ZBy cos ¥gq,
ZB Bgs L sin Y4, and LB, sin w s we learn that in each case they

inear combinations of sin p% and cos pt. Consequently, it is
clear that the period 2n/p is present in the case of forced vibra-
tions.

Let us calculate the work performed by the pitching moment My

during one period [0, 2n/p]. If we use the pitching equation
(C 18), we obtain
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§ Myad:~§ 7 1yape )" wtodae— 1o, "7 (SBycos o= oty + 20T, singgcosdy
+ 823 g cos )0t + —;—pacR‘S:’/p (06225 cos g+ 20 3 cosipq— D L3, cos )0
= "% ”""?‘S:'/p Z (002*+ Q0 cos $q—2hg) (Bg—0 cosdg) dt
"’S:W (Zq cos gy~ L cos’y+ 200 . sin g cos dq-+ @ g cos 9) e

+oacke(” SO Mg Ohobed F1)

If we rewrite the third term by meansuof the flapping equation
(C.17), we obtain:

S”" Mybde= —-l-pacR«S’"' P 5+ (Gof28-+ 20 cos g — V) (Ba—0 cos go) e

22/p

.._IBS 5B cos gig—0 5, cos? ¢+ 200 5 sin Pycos dhg+ 2 L g cos ) dde

3=/,
+IBS° Z (ﬁq—5w5¢¢+29¢9 sin ¢¢+Qzﬂ¢)ﬁ¢Pt +K So ? Zﬁqﬂth

—

(F.2)

Let us calculate the work performed by the torque during one
period [0,2n/p]. Using the torque equation (C.19), we obtain

/S"/yM,th—IBS (—°szqﬁ,~262ﬁ,sxn¢,—62ﬁ,sin¢,+ﬂ*Msin¢¢ccs@iii [ 3

However, ccording to (C.16),
J —-IBSM‘,(Zﬁqwsiﬁq“gzm’¢,+2!202}sm¢q;¢q+m2pqws¢q)édt ;
i +I”So 5 (By—0 cos g +2020 sin fy+02084) fodt , ‘

+IaS:R/, (—2372'&%—25}]& sin g —0 5y sin gy +02 L sin g cos ) di

:-/p dT ’ .

According to (C.6),

S:./p 'p" S""i’-]—dzo T . | | (7.5)

L]

o S’ "? Mybe +S M.!)dt--—--pacR‘S z(o.m+mm¢.—np,)(p,-om¢,)dz

(F.6)
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In other words, it 1s clear that the work performed by the external
forces 1s equal to the work consumed by the blade moving the ailr.
Also, In accordance with (F.1l) and (F.6),

Sh/ﬁ

—Ig\ T (Lbycosg -8 oos’¢.+zmzsm¢,eos¢.,+m):p,cos¢,wdt ‘

---;-pacms Z(oam+ﬂdms¢¢—!)ﬁ¢)ﬁ¢dt—s M0de
L (F.T)

It is clear that the term originating in the inertial forces oper- /79
ating on the blade which appeared in Eq.  (D.8) expressing the pitch
dampling is the work consumed by the blade during flappling when it
moves the air

1 wp e
’ 75‘1“.‘,’"& B 0022+ 20 cos gy Oy foctt

from which the work performed by the torque S’"’”‘ql_?'g;,,, has
been subtracted. . Jo h

APPENDIX G. ENERGY BALANCE IN CASES OF FREE VIBRATIONS

Pitching has a period defined by the root in the characteristic
equation (E.14). If we calculate the work performed by the torque
M, during one period of pitching [0,7],

S AI:D{I&.—IBS (— 2()7‘19,,[?., .ﬂZﬁqmn%»ﬁ}:ﬂqsinwﬁ 0};‘ sm%ws«,b,,)dt N (G.1)

%‘he ti,otal energy fluctuations occurring ih the pendulum during
O,t] are

(Tt~ Tpion) + (Uper—Upeor) = S;l,,é‘ﬁdt+s; Wiedde

If we rewrite this using the pitching equation (E 3),

e
e

1 (Tpm - Tp(o))+(Up(r) - Up(o)) =1 BS (Zﬁq cos ¢'q 0L costpy+2000 %, sin g cus gg +mzpﬂ C"s%)o‘l‘

— —é—puck‘s (0o, cos P+ 0L, cos? pg— R84 cos pg) bt

=IaS° (Zﬁq ccs q— 03, cos?py+20207F sin g cos g+ 38, cos ) ddt

1 " 5 (00 Bo— —4 dt :
+3 R«Soz(ﬂaa’wﬂms% Qfy) (Bg—0 cosdg) (@.2)

—geack], L0+ st o

i
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If we rewrite the third term using the flapping equation (C.17),
(Tocr—Tpior) + (Upin— Up(o)) --—Pm R'S (002 + 20 cos g —0y) (By—0 cos )t |

+1,,S (Zhq cosg—0 5 cos’y-+ 290 sin g cos fg + 25, cos ) et

e

—'lns L (B0 ¢°9¢'¢+2903m¢’q+9’ﬁq)l§¢d“‘xs Zﬁcﬂqd‘ o

However, according to (C 16)
A Inso(zﬁqwsm—lfzcosw,wm.z;sin¢,,ms¢q+m'szq@,,,q)w[‘

,: -1 BS; T (By—0 cos gy + 200 singy + 228,) B dt
—-Iss; (—20 L Bof—20 5By sin g —0 T By sin hg+82 Tsin g, cos ) dt

R R

 (Tpwr—Tpw) + ('Upur-!](o)) +(Toir—Tpio) + (Uin—Usg)
1 * L . .
="8'~pﬂcl(‘§o Z (%Q’{-QdCOSC/)q —”pq) (3«"‘0 (.'05¢q)¢lt +SnAI;.Q(ll (G * 3 )

In other words, the total energy fluctuations of the system are
equal to the work performed by the external forces. According to
(G.2) and (G.3),

—IBS (Zﬁq wb'/’q"”ﬂ???/’q%””ﬂ sin ‘/’q 005%4'9’ Zﬁq u’?"/’qwdt (I'm.)- rB(o)) + (Um U(o))

=fanoa—. —{mtR‘S 5 o0+ 20 con g — QB o (G.4) /80
.In other words, —IBS (Tﬁqcosyq—02c05¢q+’PdZsm%cos«/oq BF g cus Pg)bdde,

is equal to the work consumed by the blade during flapping when it
movesiithe alr, from which the work performed by the torque and the
reduction in the total energy of the blade part (Tp(0)-Tp(t)) *
(U(O)"U('c)) have been subtracted.

[

APPENDIX.H. CONCERNING FLUCUTATIONS''IN THE ROTOR REVOLUTION SPEED

The pitch damping sought by Eq. (1.23) was derived under the
assumption that the rotor revolution speed 1s maintained at a
constant value . However, the torque My must be supplied to the
motor in order to maintain this movement. If the torque My is not
applied by the motor and if the rotating angular velocity fluctuates,
what will be its magnitude? If we calculate by inserting Eq. (D.3)
into Eq. (C.19), we obtain

M= QUi p 0y 2 (/841 (p/2) sin (2pt— -+ 1)+ (1/8) 87 cos(2pi—Ay-+3)}
+Q135’P’9’Bx{—-[(1+l’/2)(1+2P) sm(zpc—m——-(1+2p>cus(zpz-z.>[}

+Qla&*p'mn,{ [(x-w)(l—zp) sin(2pe+a) +- (1—zp>oos(zm+z.>]}

16

| {gl,aszmn,{g[(l+ L )san bt Jcos 21]} +Qlaf7’1”9’"={ [( —g)sindt g cosn ]| (H.1)
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Q“B B, 9°B1, and BpQ2 are each approximately 1, v/8 is smaller than
%nd p is approximately 0.2. Therefore, M, is about QIgf2p2.

In the experiments, the voltage applied to the motor is maintained

uniform. Therefore, there are some fluctuations of § when the

rotor performs pitching. If we suppose that Q declines to - AQ,

in addition to the increase in the torque generated by the motor,

there will also be a reduction of the torque consumed by the aero-

dynamic resistance of the rotor, and the fluctuations of Q will

be suppressed. Even 1f we do not consider the increase 1in the

torque generated by the motor,

49 _ QL 1 '
g ZLprR“D* I (O (H.2)

Actually, the torque generated by the motor increases, and
therefore the fluctuations of Q will be even smaller.
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